Search Results for: offshore wind

  • News

Advantages of fast-curing polyurethanes for BWTs

The use of ballast water is critical to the safe operation of ships, but also poses challenges due to the need to maintain the structural integrity of ballast water tanks (BWTs) despite highly corrosive conditions. Appropriate protective coatings act as barriers to corrosion and if applied carefully to properly prepared surfaces can significantly extend the life of BWTs. Two-coat epoxy systems are commonly used today, but rapid curing polyurethanes have performance properties that make them attractive as alternative coating solutions, including tunable properties that allow the formulation of flexible yet hard coatings that resist cracking, excellent adherence to steel, high resistance to corrosion, chemicals, and abrasion and fast return to service.

Ballast tanks located at the bottom, around cargo holds, and near the bow and stern of ships provide a mechanism for maintaining balance. Water is filled or released from the tanks to stabilize and trim ships during sailing and to keep them evenly afloat during the loading and unloading of cargo. Ballast water tanks (BWTs) are typically dedicated for this purpose. Ballast tanks are also used to adjust the buoyancy of submarines and stabilize offshore oil platforms and floating wind turbines.

In marine vessels (tankers, bulk carriers, etc.), ballast tanks typically comprise the largest surface area of steel. Corrosion of these tanks can therefore significantly reduce ship safety and operational life. In the past, ships suffering from severely corroded ballast tanks have experienced total failure of their hull shell plates. There is general agreement in the industry that prevention of corrosion in BWTs is the second most important factor after design integrity in determining the operating life of a ship.

Corrosion prevention in BWTs is not a simple matter, however. The water in ballast tanks can have a high salt content, vary in the type and concentration of other ions and have a wide range for pH and may also contain corrosive chemicals. Empty ballast tanks, on the other hand, are exposed to corrosive atmospheres that cycle with the temperature of the tank. Tanks, when partially full, are also subject to continuous movement of the water.

In fact, different parts of ballast tanks corrode via different mechanisms and at different rates, and empty tanks behave differently than tanks that are often filled with water.  For Example, some parts of tanks are exposed to cyclic heating and cooling and/or local heating from warm, adjacent cargo tanks and engine rooms. Additionally, the exterior of the BWT is exposed to the weather above the water line and the differing temperatures of the sea below the water line.  Therefore the same tank can experience uneven thermal cycling due to the extreme differences in its exterior exposure. Because the upper portion of the tank is exposed to extreme thermal cycling and repetitive wet and dry service, anodic oxidation is the main source of corrosion in this part of the tank. On the other hand, the bottom area of a tank is constantly exposed to the sea and therefore is maintained at a lower temperature and is subject to cathodic blistering.  Any microbes in sediment on the bottom can also cause microbial corrosion.

Many other factors such as bacterial biofilm, mechanical vibration and effectiveness of sacrificial or impressed current anodic protection play a moderate role in determining the rate of corrosion in ballast water tanks.

To prevent corrosion in BWTs, high-performance protective coatings are applied during construction of the ship. Typically two thin layers of a suitable coating with a total dry-film thickness of approximately 300-320 microns are sufficient to provide an effective barrier against corrosion. Such coatings must meet many regulatory requirements related to their environmental and performance characteristics.

Current Coating Technologies
Preferred coatings not only provide a long lifetime of protection (15 years or more is required by the International Maritime Organization (IMO) Performance Standard for Protective Coatings (PSPC)¾see below), they must be easy to apply under the varying conditions found at different shipyards around the world and easy to maintain. Coatings that provide greater coverage for less material usage and are more tolerant of poorer surfaces are also in demand. A low volatile organic compound (VOC) content (< 250 g/l) is also necessary.

The majority of BWT coatings applied today are epoxy-based systems. Most are solvent-based, high solids formulations, although some European shipbuilders use solvent-free coatings to meet the requirements of the EU Solvent Emissions Directive (SED). The latter 100% solids epoxy systems have good performance properties, but tend to suffer from poor wetting properties and slower curing rates at low temperatures. Good wettability is necessary to ensure that pitted areas are filled rather than bridged, and thus do not leave a void below the paint film that can act as a starting point for corrosion.

Rapid curing is a very desirable property for BWT coatings because it translates into shorter construction times for new builds and reduced time in dry-dock for recoating and repair. The US Navy has developed a series of 100% solids coatings based on amino polyols prepared from either alkanol amines and polyfunctional epoxy materials or polyamines and monofunctional epoxides that are applied using plural component equipment, which eliminates the poor flow concerns.  They are referred to as “single-coat” systems because the necessary two coats can be applied in one day, rather than in two. The technology for a light-to-medium-duty coating based on a medium-viscosity resin has been licensed and is commercially available. In a study at a commercial shipyard in Asia, the rapid curing coating, which meets the IMO PSPC requirements, was shown to provide a nearly 40% increase in painting productivity and a 20% overall cost savings.

Advantages of Polyurethanes
Certain polyurethane (PU) coatings have also been shown to have significant potential as highly protective barrier coatings for ballast water tanks. Specifically, 100% solids rigid and structural polyurethane coatings are promising because they cure very rapidly, even at cold temperatures, and have superior resistance properties.

One of the major issues with epoxy coatings is their inability to build desired dry film thickness at sharp edges, corners, weld seams and other defect sites. Coating failures generally occur first in these areas, usually do to crack formation. Unfortunately, there are many of these sites present in BTWs. While the PSPC does require that sharp edges be addressed prior to coating, this problem remains a concern in the industry. Advances in epoxy coating technology have helped, but further improvements are still desired.

Polyurethanes have the key advantage of property tunability. Careful selection of the polyisocyanate and polyol segments can provide coatings with very specific properties. For ballast water tank applications, a hard coating is needed that retains some flexibility to allow for high film builds at edges, seams and defect sites. This unique mix of properties, which cannot be achieved with epoxy systems, is possible with polyurethane coatings. Careful preparation of the PU resin and development of the formulated PU coating can provide coatings with desirable edge retention properties.

With the appropriate choice of starting materials, it is also possible to formulate polyurethane systems with curing times that allow for the application of perfectly smooth, high-build coatings. These barrier coatings are applied with no defects in one continuous application and serve as abrasion- and impact-resistant protective barriers to corrosion. Furthermore, because they contain no solvent, 100% solids polyurethane coatings are “green” coatings that meet stringent environmental regulations, and most are odor-free, providing a better shipyard application environment than high-solids epoxies.

Surface adhesion, as for all coating applications, is crucial for BWT coatings and has  a significant impact on coating performance. More forgiving coatings that have strong adhesion to the different types of steel used in shipbuilding and the different types of surface conditions that can be present are therefore highly desired for the protection of ballast water tanks. Polyurethanes meet this requirement and generally surpass the adhesion properties of many epoxy systems.

The inherent barrier properties of polyurethane coatings are also excellent. PUs show high resistance to corrosion and chemicals. In addition, they provide superior abrasion and impact resistance, which is not true for epoxies systems. Finally, the very rapid curing of polyurethanes over a wide temperature range makes them suitable for application to water ballast tanks regardless of where they are built or dry-docked and ensures reduced coating times during newbuilding and fast return to service for repair/maintenance operations.

Performance Requirements: PSPC and Invasive Species Control
The IMO PSPC became effective in 2008 and provides specific requirements for the types of corrosion control coatings that can be used on ballast water tanks, as well as appropriate application, inspection and maintenance procedures. Extensive documentation is also specified in the standard. The intent is to have all BWTs coated with systems that will provide a 215-year service life.

Coating systems must be pre-qualified/certified prior to use in ballast water tanks. Certification can be obtained from an approved, independent testing laboratory, through demonstrated performance in the field for a minimum of five years, or by presenting results from previous, relevant tests. Coating application during the newbuilding process must be extensively monitored, and inspections performed at numerous phases. For example, testing of the surface profile and water-soluble salt content are required before application of the first coat, and a thorough inspection of the first coat is necessary before the second coat can be applied. These requirements can slow down the coating process and increase the cost. Consequently, rapid-cure coatings that allow the application of two coatings in a single day are attracting significant attention.

Recent regulations attempting to prevent the spread of invasive species through ballast water must also be considered when installing BWT coatings. There have been several cases of the transport of invasive species around the world, some of which have had severe ecological and/or economic impacts. However, many of the current chemical technologies available for destroying harmful marine organisms in ballast water are based on oxidizing agents (e.g., chlorine dioxide, ozone) that are damaging to the coatings and can lead to corrosion problems. Mechanical systems based on filtration/separation and those that use ultraviolet radiation tend to be less problematic. Therefore, it is crucial that testing of corrosion control coatings for ballast water tanks be performed under maximum treatment conditions for a given application.

A Word about Surface Preparation, Quality Assurance and Maintenance
As with all coatings, surface preparation is critical to the performance of BWT coatings. In fact, lack of proper surface preparation is one of the main causes for coating failures in ballast water tanks. It is imperative that appropriate surface preparation standards (SSPC/NACE/ASTM) be met. Attention should be paid to both surface profile and soluble salt content.

Application conditions must also be considered, as temperature and relative humidity during application can affect the ultimate performance of many coating systems, particularly epoxies. While most large, modern shipyards have enclosed areas for conducting abrasive sand blasting and painting (with temperature and humidity control), some smaller facilities do not. Work is therefore performed under ambient conditions using power tools, which can result in poor surfaces for coating. Polyurethanes offer advantages in these situations, as they have superior adhesion to poor surfaces and temperature and humidity do not impact their curing or ultimate performance properties.

PUs are Good for Potable Water Tanks
The properties of polyurethanes that make them ideal as corrosion protection coatings for ballast water tanks also make them well-suited for use as protective systems for marine potable water tanks. Many polyurethanes meet the requirements of the ANSI (American National Standards Institute)/NSF (National Sanitation Foundation) Standard 61 – Drinking Water System Components, which establishes stringent requirements for the control of leachables and extractables from materials that come in contact with either potable water or products that support the production of potable water.

Conclusion
Preventing corrosion in ballast water tanks is crucial for ensuring the safety and longevity of on marine vessels. While epoxy systems are currently the most common coatings used in this application today, properly formulated, fast-curing polyurethanes are attractive alternatives with significant potential to reduce lengthy coating processes, increase shipyard productivity and thus reduce costs.

  • News

VIDEO: Fiber rope retrofit for MacGregor subsea cranes

JUNE 16, 2016 —  A retrofit option for MacGregor subsea cranes replaces the original steel wire rope with high-performance synthetic fiber rope, using the same technology as MacGregor’s advanced fiber-rope crane, the

Damen Shipyards delivers first Shoalbuster 3512

MAY 20, 2016 —The first of Damen’s new Shoalbuster 3512 class multipurpose workboat, the Noordstrom, was recently handed over to Dutch marine services specialist Van Wijngaarden Marine Services B.V. in the port

  • News

ABS reports another year of strong performance

APRIL 27, 2016 — Classification society ABS held its 153rd Annual Meeting in New York yesterday. Chairman, President & CEO Christopher J. Wiernicki reported that “2015 was a year of moving forward

As Easy as Building ATBs

Nichols Brothers Boat Builders recently completed sea trials on the second of 10,000 hp oceangoing tugs for Kirby Offshore Marine, the coastal tug and barge arm of Kirby Corporation, Houston, TX. The 136 ft x 44 ft tug, Tina Pyne, will be connected to the 185,000 bbl ocean tank barge 185-02 built by Gunderson Marine, Portland, OR.

Kirby’s newbuild plan also includes two 155,000 bbl/6,000 hp Articulated Tug Barge (ATB) units under construction at Fincantieri Bay Shipbuilding in Sturgeon Bay, WI, as well as two 120 ft x 35 ft, 4,894 hp tugs being built by Nichols Brothers Boat Builders. Each tug will be powered by two Caterpillar 3516C engines, each rated at 2,447 hp at 1,600 rev/min, with Reintjes reduction gears turning two Nautican fixed-pitched propellers with fixed nozzles. The Reintjes gears were supplied by Karl Senner, LLC, Kenner, LA. The tugs will also have two C7.1 Caterpillar generators for electrical service. Selected deck machinery includes one TESD-34 Markey tow winch, one CEW-60 Markey electric capstan, and one Smith Berger Tow Pin.

Kirby Offshore Marine is the largest U.S. operator of coastal tank barges that provide regional distribution of refined petroleum products, black oil and crude oil. Kirby grew its coastal marine transportation business through the acquisition of K-Sea Transportation Partners L.P. back in 2011 in a transaction valued at about $604 million. At that time, Kirby acquired 58 tank barges (only 54 were double hull) with a capacity of 3.8 million barrels and 63 tugs.

Already the operator of the largest inland tank barges and towboats, Kirby Corporation will grow further with the purchase of Seacor Holdings Inc.’s inland tank barge fleet for about $88 million in cash.

Under the terms of the deal struck last month, Kirby will acquire 27 inland 30,000 bbl tank barges and 13 inland towboats, plus one 30,000 bbl tank barge and one towboat currently under construction. As part of the agreement, Kirby will transfer to Seacor the ownership of one Florida-based ship-docking tugboat.

Kirby Inland Marine currently has 898 active inland tank barges and 243 towboats, with a total carrying capacity of 17.9 million barrels. The primary cargoes transported by this fleet are chemicals, petrochemical feedstocks, gasoline additives, refined petroleum products, liquid fertilizer, black oil and pressurized products.

Kirby President and CEO David Grzebinski, says “Operating primarily in the refined products trade, these assets will be complementary to our existing fleet and will allow us to continue to enhance customer service.”

TRIPLE-SCREW BOATS FOR MID-RIVER
Over the years, Rodriguez Shipbuilding, Inc.’s triple-screw towboats have won a following operating in the shallow waters where the Mississippi River meets the Gulf of Mexico. These Lugger-type vessels are designed with a distinctive aft-cabin.

Mid-River Terminals of Osceola, AR, recently took delivery of a new design towboat from Rodriguez Shipbuilding, Coden, AL. With a conventional forward-house pusher configuration, the new 70 ft x 30 ft MV/ Dianna Lynn uses the same propulsion as the Lugger tugs. This is composed of three in-line six-cylinder Cummins QSK 19 engines, each delivering 660 hp. Each engine turns a 66-inch stainless steel propeller through ZF gears with 6:1 reduction ratio. The combination gives the 1,980 hp towboat an eight-foot operating draft. 

Fitted with large windows, the wheelhouse has a full 360-degree view and is set atop two accommodation decks and a half deck that also serves for bridge electronics support. This gives the towboat a 31-foot high eye-level, with full tanks, for working high barges.

Steering and flanking rudders are controlled by wheelhouse levers with mechanical shafts through the houses and connected to the hydraulic actuator valves in the upper engine room.

A set of push knees and deck winches with cheek blocks facilitates barge work. A pair of 55 kW gensets meets the boat’s electrical requirements.

Zero discharge tanks, built integral to the hull, provide storage for treated sewage and all drains. A separate tank handles waste oil.

The M/V Dianna Lynn is the fourth boat in the Mid-River Terminal fleet, all of which are Cummins powered. Owner Rick Ellis said, “We wanted the three engines for redundancy so that even if we loose an engine we still have over 1,200 horsepower.”

The new boat will be primarily involved in fleeting and harbor work, “Rodriguez did a great job and it is a great handling boat,” Ellis added.

BOUCHARD, MORAN EXPANDING FLEETS
As we highlighted last month, Bouchard Transportation’s multi-million-dollar newbuild program is winding down. The Melville, NY, owner is completing the construction of two new 6,000 hp, 310 ft x 38 ft Intercon tugs at VT Halter Marine, Pascagoula, MS. The tugs Morton S. Bouchard Jr. and Fredrick E. Bouchard will be connected to the B. No. 210 and B. No. 220. The two tank barges were the first double hull tank barges built by Bouchard,. Both were built as wire barges, but following their conversion and stretch at Bollinger Shipyards, Inc., both will be Intercon, flat deck double hulls capable of carrying 110,000 bbl of oil.

Moran Towing, New Canaan, CT, expects to take delivery shortly of a 5,300 hp/110,000 bbl ATB unit from Fincantieri Bay Shipbuilding. The Sturgeon Bay, WI, has another 8,000hp/155,000 bbl ATB unit under construction for Plains All American Pipeline, with an option for a second unit, and signed a hotly contested order for another 8,000 hp/185,000 for another earlier last month. That contract includes an option for another.

The new barge will have a capacity of 185,000-barrels with dimensions of 578 feet by 78 feet. The tug will be an 8.000-HP unit equipped with Tier 4 engines—believed to be GE Marine—to meet the latest EPA emission standards.

When complete, the ATB will operate on the U.S. East Coast and Gulf of Mexico.

“We are pleased to have this opportunity,” said Francesco Valente, FMG President and CEO. “This new contract marks an additional expansion of our product portfolio, confirms our ability to win business with new customers in a very competitive market and further consolidates our presence and reach in the U.S. market.”

“This award increases our pipeline of new construction to 10 vessels and provides additional stability to our business,” said FBS Vice-President and General Manager, Todd Thayse. “We are grateful for the confidence that our customers continue to place in our reputation for quality and the strong shipbuilding skills of our workforce.”

Conrad Shipyards, Morgan City, LA, meanwhile, is building the 80,000 bbl ATB unit for John W. Stone, as well as two ATB tugs for Harley Marine Services, Seattle, WA. Conrad Orange Shipyard in Orange, TX, recently delivered the 35,000 bbl Double Skin 315 to Vane Brothers Company. That barge was towed to New York by the Elizabeth Anne, the first in a series of eight 4,200 hp tugs being built by St. Johns Ship Building, Palatka, FL.

Designed by Frank Basile, P.E. of Entech Designs, LLC, the Elizabeth Anne Class tugboat is a close cousin to Vane’s Basile-designed Patapsco Class tugboats, 15 of which were produced between 2004 and 2009. Measuring 100 feet long and 34 feet wide, with a hull depth of 15 feet, the model-bow Elizabeth Anne utilizes two Caterpillar 3516 Tier 3 engines, each generating 2,100 hhp at 1,600 rev/min. Two John Deere PowerTech 4045, 99 kW generators deliver service power to the boat, while a third John Deere 4045 teamed with an Allison transmission drives the chain-driven INTERCON DD200 towing winch.

VectraROBERT ALLAN’S LATEST
Over the years, world renowned naval architectural and marine engineering firm Robert Allan Ltd. Has successfully teamed with shipyards around the world to bring new innovative tug designs to the market. Its latest is the VectRA 3000 Class Tug, a high performance VSP Tractor tug designed by Robert Allan Ltd in close collaboration with Turkish ship builder Sanmar and Voith Turbo Propulsion. The tug is designed for maximum efficiency in the performance of towing, harbor ship-handling and escorting of large ships. Performance has been verified with extensive model tests at the commencement of the design cycle. The unique propulsion arrangement features high-speed diesel engines connected to the Voith units via reduction gearboxes with integral clutches. With a bollard pull of 70 tonnes, the VectRA 3000 form can generate escort steering forces in excess of 100 tonnes. Additionally, the design has fire-fighting and oil recovery capabilities and is fully MLC compliant.

The VectRA 3000 has been designed exclusively for Sanmar to offer as one of its highly successful stable of progressive tugboats for the world market.

The first vessel in the series, the M/T Ares, built for Italian tugowner Tripmare SpA, was successfully launched at Sanmar’s new Altinova advanced shipbuilding facility this past February.

The tug has an overall length of 30.25 m, beam of 13m, depth of 5.1m, and design draft of 6.1m.

The vessels are built and classed to the following ABS notation: ✠ A1 Towing Vessel, Escort Vessel, ✠ AMS, Unrestricted Service, UWILD, HAB (WB), ABCU Fire-Fighting Vessel Class 1 Oil Spill Recovery – Capability Class 2 (>60° C) (OSR – C2).

Rather uniquely for a VSP installation, the propulsion drivetrain comprises two Cat 3516C high-speed diesel engines, each rated 2,525 kW at 1,800 rev/min, and driving Voith 32R5EC/265-2 cycloidal propellers. The engines are connected to the Voith drives through a pair of Reintjes WAF 863 gearboxes and Vulkan composite shafts, rather than using the more traditional turbo coupling. This combination is smaller, lighter and less costly than the traditional medium speed drive system. The electrical plant consists of two identical diesel gensets, each with a rated output of 86 ekW.

Crew accommodations are all located on the main deck level for optimal crew comfort. There are 4 single crew cabins plus 1 double crew cabin, each with an en-suite bathroom. A comfortable lounge/mess area and galley facilities are also in the deckhouse, with galley stores and laundry room located below the main deck forward.

All towing, ship handling, and escort work is performed using a double drum escort winch and escort rated staple fitted on the aft deck. One drum can store 710 meters of steel wire line, while the other stores 150 meters of synthetic towline. For increased operational flexibility radial type tow hooks are installed on the main deck forward and aft.

As in a traditional tractor configuration, the stern is the working end of the tug, and as such features heavy-duty cylindrical fendering with a course of ‘W’ fenders below. Hollow ‘D’ fenders protect the sheer lines and tie neatly into the ‘W’ fenders at the bow.

The wheelhouse is designed for excellent 360-degree visibility and includes overhead windows. The split type console is biased aft to ensure unobstructed visibility of the working deck (including the winch, staple, bulwarks and fenders) during operations.

CARGILL’s PUSHBOATS FOR THE AMAZON
In Brazil, the construction of a fleet of Robert Allan Ltd.-designed pushboats and barges for Cargill Transportation is nearing completion. To be used for transporting grain products on the Amazon River system, the fleet includes two shallow-draft RApide 2800-Z2 class pushboats built at INACE in Fortaleza, Brazil and 20 hopper barges built at Rio Maguari in Belem, Brazil.

Each of the two new RApide 2800-Z2 Class pushboats are 28m x 10.5m, with a minimum operating draft of 2.2m and normal operating draft of 2.5m. The two sister vessels, the Cargill Cachara and Cargill Tucunare, are designed to push barge convoys on the Amazon River system.

During the early phases of design, extensive CFD simulations were undertaken to optimize the pushboat’s hull shape to minimize total convoy resistance.

This work was completed in conjunction with extensive logistics modeling of the transportation system to optimize the selection of vessels for the desired route and to analyze operational drafts and cargo throughput at various river levels.

The pushboats were designed to ABS and Brazilian NORMAM-02 requirements and are outfitted to the highest standards.

The wheelhouse is designed for maximum all-round visibility with a split forward control station providing maximum visibility to the foredeck working area of the tug as well as to the convoy of barges ahead. Accommodation for up to 13 people is provided onboard and a large galley and mess is provided on the main deck.

The deckhouse extends aft over the main propulsion components, which comprise a pair of Caterpillar 3512B diesel engines, driving Schottel SRP 550 Z-drive units. The drives are fitted in tunnels designed to optimize flow while reducing draft. Two identical Caterpillar diesel gensets are provided in the vessel’s auxiliary machinery space located below the main deck.

The corresponding 61m x 15m box and rake barges were designed by Robert Allan Ltd. to ABS River Rule requirements. Additional extensive FEA analysis of the structure was performed in order to optimize the design for minimum steel weight while ensuring long service life during river operations. Sliding aluminum hatch covers have been supplied to ensure the cargo stays dry at all times.

Eastern launches MPFSV for Harvey Gulf

JANUARY 19, 2016 — Eastern Shipbuilding Group, Inc., Panama City, FL, recently launched the M/V Harvey Stone (Hull 234) for Harvey Gulf International Marine, LLC of New Orleans, LA, in a ceremony