Vessel General Permit

USCG and states in VIDA discussions

Following a December 4, 2019, conference call with representatives from U.S. states and territories, the U.S. Coast Guard has established a working group to address issues related to the Vessel Incidental Discharge

  • News

Best practices in choosing and maintaining EALs for marine applications

With the U.S. Environmental Protection Agency’s Vessel General Permit (VGP) regulations in place for several years now and Small Vessel General Permit (sVGP) poised to expand these regulations to new classes of vessels, marine operators have embraced the use of environmentally acceptable lubricants (EALs) and become familiar with the inherent environmental and performance benefits of switching from conventional lubricants.

However, there is still a great deal of confusion in the marketplace surrounding EAL choice and maintenance. It’s important for operators to educate themselves on which type of EAL is best suited to different applications and strategies for maximizing ROI and equipment life.

The EPA recognizes four types of EALs. While all meet requirements, these lubricants vary widely in terms of suitability for different applications, performance characteristics, and fluid life, among other considerations. While all EALs offer the advantage of being high viscosity index lubricants (High-VI), it is important to cut through confusing and oftentimes contradictory marketing claims to understand the relative advantages and disadvantages of each type, based on its chemical composition.

  • Vegetable Oils (HETG) – Also known as triglycerides or natural esters, these lubricants are made of vegetable, rapeseed (Canola), sunflower, coconut, palm or soybean oil. HETGs provide very good wear properties and are compatible with most seals and hoses, but are not as well suited to high temperature applications as other EALs. They are also more susceptible to hydrolysis in the presence of water and have a shorter lifespan than other EALs. With that in mind, they are best suited to land-based applications with scheduled change-out intervals.
  • Synthetic Esters (HEES) – Esters are synthesized by the reaction of an alcohol with an acid. This reaction process allows for the flexibility to customize the type of ester used for a particular application. Generally, HEESs offer high performance, good oxidative and thermal stability and corrosion prevention, but they can be prone to hydrolysis in the presence of water. They work well in a wide range of land and marine applications with scheduled change-out intervals. Given possible hydrolysis issues, it’s best to use saturated hinder esters to provide the best stability with marine applications.
  • Polyalkylene Glycols (HEPG) – Made of synthetic, petroleum based oil, HEPGs are created by the polymerization of ethylene or propylene oxide. HEPGs are designed to be water soluble, but this water solubility may increase toxicity. They are well suited to operate in high and low temperatures, and they have strong fire-resistant properties, which make them an excellent choice for volatile environments. HEPGs are typically recommended for use in a wide range of both land and marine applications with scheduled change-out intervals. On the downside, they are typically not derived from a renewable resource, are not compatible with other mineral oils and EALs, and can break down certain equipment seals, hoses, paints and varnishes.
  • Polyalphaolefins (PAOs) and related hydrocarbon products (HEPR) – Often referred to as classic mineral oil based lubricants, HEPRs are synthesized hydrocarbons traditionally derived from crude oil meant to provide a low viscosity base oil that is readily biodegradable. However, more recently, HEPR type base stocks from renewable sources have been developed. HEPRs are highly durable and offer extended wear protection and fluid life, making them an ideal choice for equipment whose fluid cannot easily or frequently be changed. HEPRs also offer broad temperature range performance and seal compatibility, with good corrosion protection and strong hydrolytic and oxidative stability, reducing friction, preventing system wear and increasing efficiency. Essentially, HEPRs are recommended for use in a wide range of land and marine applications with scheduled change-out intervals. They also offer the added benefit of drop-in replacement and offer excellent water separation characteristics.

Getting the Water Out: Emulsifying Versus Demulsifying Fluids
Another critical decision factor in EAL choice is how the lubricant interacts with water. In marine environments it is not a question of whether, but how and how much water will enter a hydraulic system. While some operators choose to use emulsifying fluids that can essentially absorb this water, recent studies have shown that the presence of water in the system, even if it has been emulsified, serves as a catalyst for oxidation and hydrolysis – the formation of acids that corrode and damage the system. These same studies suggest that the use of demulsifying EALs – ones that separate the water from the fluid for easy extraction – have the potential to greatly extend equipment service life and performance. Like conventional oil, HEPRs have the best demulsifying properties, making them a great choice for marine applications.

Choosing Wisely
The chart below provides information on the specific properties and performance attributes of each type of EAL, as well as standard petroleum based lubricant, to help guide your decision-making.

  HETG HEES                 HEPG HEPR Standard Petroleum
Readily Biodegradable Yes Yes Yes Yes No
Ecotoxicity Low Low Low* Low High
Bioaccumulation Potential No No No No Yes
Sheen No No No No Yes
Seal Compatibility Good Good Poor Good Good
Wear Performance Very Good Very Good Very Good Very Good Very Good
Oxidation Performance Poor Good Very Good Very Good Very Good
Low Temperature Performance Poor Very Good Very Good Very Good Poor
Viscosity Index Very Good Very Good Very Good Very Good Poor

*Solubility may increase the toxicity of some PAGs

Best Practices for Extending Fluid and Equipment Life and Maximizing ROI
Choosing the right EAL is only half the battle; measuring the effectiveness of your chosen lubricant and instituting a proper maintenance regime is essential to ensuring performance, protecting your equipment and getting the most for your money.

Maintenance Protocols
In addition to establishing performance benchmarks, logging all issues and causes of downtime, making timely repairs and establishing a regular change out schedule, cleanliness control is one of the single most important and often overlooked aspects of effective lubricant maintenance.

To ensure cleanliness and avoid contamination, refill or dispense only from clean, sealed containers. It’s also important to follow OEM recommendations, establish a set protocol and document all maintenance, including fluid top-offs.

Oil Analysis
Oil analysis, another critical component of maintenance, is the laboratory analysis of a lubricant’s properties, suspended contaminants and wear debris to provide a snapshot of how fluids and equipment are performing at a given time and over time. This analysis is performed by capturing oil samples during routine predictive maintenance to provide meaningful and accurate information on lubricant and machine condition. By tracking oil analysis sample results over the life of a particular machine, trends can be established which can help extend equipment, eliminate costly emergency repairs and increase uptime, all of which results in significant savings.

If you do not currently have an oil analysis program in place, here are some tips to get started:

  • Find the right partner – Look for a lubricant vendor that will provide the following:
    • a clear plan of how often (monthly, quarterly) and at what intervals your lubricant should be sampled
    • sampling instructions
    • clear communication, including results and recommendations for improvement
    • oil testing and analysis through independent laboratories
  • Ask to see a sample analysis and make sure it tests for the following:
    • Viscosity @ 40°C and 100°C
    • Acid Number
    • Water contamination
    • Elemental Content
    • Particle Count
  • Use the Data – Failing to take appropriate recommended maintenance actions can be very detrimental, but use common sense to ensure that the suggested action is practical and cost effective and examine possible alternatives.

If you have questions about choosing the right EAL and maintenance practices for your operation, application and needs, the best place to start is to contact your OEM and possible vendors. At RSC Bio Solutions, we work closely with our customers to set up customized programs and solutions and continue to make recommendations based on regular results to help our customers protect their equipment, their workers and the environment. For more information, please visit

Assessing court’s ruling on VGP ballast water requirements

An “action item” alert from law firm Blank Rome sheds some light onto the significance of this decision.

Blank Rome notes that the Second Circuit Court of Appeals remanded the issue to the EPA to redraft the ballast water sections of the VGP.

The firm says that “the differences between the VGP ballast water provisions, International Maritime Organization (“IMO”) Ballast Water Management Convention, and U.S. Coast Guard’s ballast water regulations have posed a number of compliance challenges thus far, which may be further exacerbated by possible new VGP requirements. While substantive changes to the VGP ballast provisions, if any, are likely years away, shipowners and operators should be aware, closely monitor, and be prepared to comment on a new draft VGP in the future.”

“Most notably,” says Blank Rome, “the court stated that the EPA failed to adequately explain why stricter technology-based effluent standards should not be applied, failed to give fair and thorough consideration to onshore treatment options, and failed to adequately explain why pre-2009 Lakers were exempted. The court instructed the EPA to reconsider the VGP ballast water provisions in accordance with its ruling. In the meantime, the 2013 VGP will remain in effect.”

“The possibility that the EPA may alter its VGP ballast water provisions does, however, create uncertainty for those striving to comply with both the VGP and U.S. Coast Guard ballast water requirements,” notes Blank Rome. “The U.S. Coast Guard’s ballast water regulations, like the current VGP ballast water requirements, for the most part mirror the IMO Ballast Water Management Convention, though there are some differences. Ship owners and operators have struggled to understand and comply with these overlapping requirements. Any changes to the EPA’s ballast water requirements will require extensive discussion with the U.S. Coast Guard to ensure any new VGP ballast water requirements can co-exist with the U.S. Coast Guard and IMO regimes.

“The ruling does not impact the U.S. Coast Guard’s ballast water management system type approval process. That said, should the EPA create stricter technology-based effluent limitations (TBELs) than the U.S. Coast Guard and IMO standards, it will be even more challenging for vessels to comply with both the U.S. Coast Guard and EPA standards because the systems approved by the U.S. Coast Guard and required to be installed may or may not meet the stricter VGP TBELs. It is also unclear how the EPA would enforce stricter TBELs as the Coast Guard generally conducts the vessel inspections and passes information on possible violations to the EPA.”

Read the full text of the Blank Rome action item HERE

VGP regulations cover anodes, too

DECEMBER 18, 2013 — According to Canada Metal (Pacific) Ltd, Delta, BC, by December 19, the U.S. Environmental Protection Agency expects vessel owners and operators with craft included under the Vessel General