Search Results for: "El Faro"

  • News

The Course to Career Success

 An increasingly technical world – on board and ashore – and a growing mariner shortage have conspired to make maritime education and training more important than ever. The maritime world plays a significant role in moving the global economy and its goods, people and power. Educational institutions ensure those responsible for moving the world’s assets across the seven seas are well-qualified and prepared for their roles.

According to the latest BIMCO and ICS manpower report, the industry is facing a need for nearly 150,000 officers in the next decade and is already short 16,000 officers. The need to keep men and women sailing on their licenses for longer, and to recruit and train new officers, is growing steadily. In times of high demand, it is not unknown for the quality of a product to decrease. Yet that is an unconscionable risk for the maritime industry and its regulatory agencies. In fact, requirements to earn and upgrade a license are becoming more stringent, meaning that maritime educators must take additional steps to ensure the necessary requirements are met for all entering the fleet.

Additionally, vessels and operating procedures are becoming increasingly complicated; it is imperative that the men and women in charge of them and their cargo know what they are doing.

At SUNY Maritime College in New York City, the professional education and training department is responsible for giving professional mariners the continuing education they need to stay current and qualified under changing regulations. The program also trains students for limited tonnage licenses, playing an important role in the nation’s brownwater fleet.

For more than 100 years, SUNY Maritime has educated and trained merchant mariners, changing its curriculum, facilities and program offerings to align with the needs of the industry and U.S. Coast Guard requirements. Once again, the college is working to meet the growing mariner demand and to ensure that they succeed in their pursuit of Coast Guard mariner credentials.

The changes – among others – include offering additional courses to help licensed mariners maintain and update their skills as well as building facilities to train new mariners. The Manila amendments to the International Convention on Training, Certification and Watchkeeping standards, approved in 2010, go into effect at the end of the year. Safety is, and always will be, paramount to the maritime landscape, and the Manila amendments are designed to enhance crew safety at sea.

The amendments require, among other things, that all mariners take regular courses in basic training, renew their endorsements, and pass leadership courses to upgrade and maintain their credential.

No longer is experience at sea enough.

Basic training, which covers all the subjects most important to a vessel’s safety, still teaches basic firefighting, personal survival techniques, personal safety and social responsibility, and basic first aid. But now mariners will need to take the course, or a version of it, every five years in their professional careers.

After the end of the year, mariners entering the profession will take the original 40-hour course that has been taught for years and which introduces them to onboard safety operations. A 16-hour refresher course will be required for all who have not accrued 360 days of sea time in the past five years. An 8-hour course has been designed for mariners who have accrued the 360 days in a five-year period.

Nor is it enough anymore to earn lifeboatman, fast rescue boat or tankerman-PIC endorsements once and carry them for life. Once the Manila amendments go into effect, mariners must renew these qualifications to keep them.

These courses are being developed by a variety of players, including state maritime academies like SUNY Maritime.

Industry professionals, executives and thought-leaders have always prized safety over all else—safety of their crews, their vessels and, lastly, of their cargo. But tragedies like the sinking of the El Faro serve as an unfortunate reminder to all of us of how dangerous our industry can be and how necessary these skills are for the well-being of all who sail.

Safety practices and awareness are, of course, the most important thing that maritime educators impart to their students. This is a dangerous field and there are too many things that can go wrong.

But the Manila amendments have also recognized the increasing importance of a second set of skills related to teamwork and leadership, not only for those in leadership positions but for all officers onboard a vessel.

The essence of Coast Guard licensure training, at SUNY Maritime and elsewhere, is focused on developing mates and engineers who can work together and make decisions. The Coast Guard requires a regimented lifestyle and, though interpretations of that lifestyle vary, the focus is in developing an individual’s character and leadership skills so that the safety of the crew and vessel are paramount, rather than individual wants and needs.

But the regimental program at SUNY Maritime, in keeping with STCW standards, now includes leadership and teamworking training, while professional mariners can come to the campus to take the individual course. The course will focus on case studies, workload management, maritime conventions and regulations, and situational awareness to enhance decision making skills.

STCW standards also include training for those looking to advance into personnel management positions on both the deck and engine sides of vessel operations. More training has been added to ensure that officers can work together to, once again, ensure the vessel’s operations go as smoothly and safely as possible. The 35-hour course is required for all chief mates, masters, second engineers and chief engineers. It focuses on managing and training shipboard personnel, building situational awareness, and optimizing the use of engineering and bridge resources, among other things.

These requirements are the latest expansion of the necessary training for licensed mariners.

As the scope of training expands, so too have the resources and facilities at the academies which have grown and become more sophisticated. Ships and other vessels are increasingly technical and, though training ships and cadet commercial shipping assignments offer real-world experience onboard, it is unwise to allow a future mariner to sail without previous knowledge and virtual experience.

Simulation technology has become so advanced that cadets and mariners can gain experience with nearly any situation before ever stepping onboard. In a simulator, future mariners can practice standing watch anywhere in the world on a vessel powered by any form of fuel. As the global fleet changes from steam to diesel to, increasingly, natural gas in an effort to reduce pollution, these opportunities help professional mariners gain the experience they need to sail for a variety of companies and on a variety of vessels.

All of the maritime academies have expanded their simulation centers and systems in recent years. At SUNY Maritime, in the past year programs have built or expanded a tug and barge simulator and a full mission engine room simulator, which is enhanced with a 20 desktop station classroom to allow as many students to gain experience as possible.

These technologies, as complex as they are, can only produce data from which a student can learn. The equipment allows for—indeed it requires—a large amount of human interaction.

After all, the human element is by far the most important element of any vessel at any time and in any place. Interpreting the data onboard a simulator allows a professional mariner to correctly interpret the data coming from a vessel’s systems and act based on that data to ensure the safety of the vessel, cargo and crew.

Simulators and simulation systems are imperative for cadets and mariners to become familiar with the equipment onboard a vessel and that they will someday use and be responsible for. Simulation allows them to learn, within a controlled environment, what a navigational bridge or engine room is capable of and how to harness it to move a vessel safely from one port to another. Such training exercises allow students to make mistakes and learn from them without risking millions of dollars, environmental damage and lives.

Simulators at SUNY Maritime, as at the other academies, are nothing new. SUNY Maritime has several Class A bridge simulators, radar/ARPA ECDIS labs and a liquid-cargo handling simulator. As onboard technology and simulation programs become increasingly sophisticated, maintenance and software upgrades ensure that future mariners are getting the best experience possible and that which most closely mimics the world they will be sailing in after earning their Coast Guard licenses.

Partnerships with maritime companies help to ensure not only that new mariners are getting the appropriate training, but that current mariners can also return to maintain and upgrade their credentials. The ATB simulator at Maritime College has been supported and expanded through the generosity of Bouchard Transportation Company, Inc. The latest expansion includes two Class B stations to allow coordination between up to three tugs and a barge.

Mariners and cadets working in SUNY Maritime’s engine room simulator have the additional benefit of being able to train remotely through cloud technology. The simulator is no longer bound to the room in which it is confined, and trainees are able to spend additional time with the equipment. This capability, combined with digital textbooks, means that the possibilities for training and continuing education are endless.

These simulators and additional STCW courses help our nation’s mariners adapt to and thrive in an ever-changing industry. The same way that any other professional must adapt to the changes brought on by the information revolution and a changing world, so too must the mariner. Indeed, since the mariner travels the world and plays such a large role in the functioning of the global economy, the needs for continuing education and training are perhaps even more important than most other professions.

 

 

  • News

Shipping losses decline slightly

MARCH 22, 2016 — According to the Allianz Global Corporate and Specialty Safety and Shipping Review 2016, the shipping industry saw the number of total losses remain stable during 2015, declining slightly

  • News

NTSB eyes Anthem of the Seas incident

FEBRUARY 10, 2016 — Sen. Bill Nelson has called for the National Transportation Safety Board to investigate the voyage that saw passengers aboard the Royal Caribbean cruise ship Anthem of the Seas

  • News

The Top Ten Maritime Stories of 2015

DECEMBER 31, 2015—As the world rings in the New Year—whether it is by cramming into Times Square to watch the nearly 6-ton Waterford crystal ball drop or soaking up the spectacular fireworks

  • News

The Best Ships of 2015

1. ISLA BELLA, WORLD’S FIRST LNG-FUELED CONTAINERSHIP (pictured above)

TOTE Maritime’s 3,100-TEU containership Isla Bella was due to set sail for San Juan, PR, on November 24, marking the first time a ship in a Jones Act liner service will burn Liquefied Natural Gas (LNG) as a marine fuel.  When the 764-foot-long Isla Bella transited the Panama Canal back on October 30 on her way to the Port of Jacksonville, Panama Canal Administrator/CEO Jorge L. Quijano called her “a true engineering feat.”

Among the principal maritime stakeholders involved in the successful launch of the Isla Bella and her sister Perla del Caribe are: owner and operator TOTE, shipbuilder General Dynamics NASSCO, designer DSEC (Daewoo Shipbuilding and Marine Engineering’s ship design arm), engine licensee MAN Diesel & Turbo, classification society ABS, and regulator U.S. Coast Guard.

The two Marlin Class containerships were contracted by TOTE in December 2012 and are being built at a total cost of about $375 million.

The 764-ft Isla Bella is equipped with the world’s first dual-fuel slow-speed engine, an 8L70ME-GI built by Korea’s Doosan Engine, under license from MAN Diesel & Turbo. With a 3,100 TEU capacity, the LNG-powered Isla Bella reduces NOx emissions by 98 percent, SOx emissions by 97 percent and CO2 emissions by 76 percent. The technology makes the ship one of the world’s most environmentally friendly containerships afloat.

During LNG will allow the Marlin Class Isla Bella to be fully compliant with strict emissions regulations while operating in both the North American Emissions Control Area and the U.S. Caribbean ECA.

At the time of her delivery, Kevin Graney, Vice President and General Manager of General Dynamics NASSCO, said, “Successfully building and delivering the world’s first LNG-powered containership here in the United States for coastwise service demonstrates that commercial shipbuilders, and owners and operators, are leading the world in the introduction of cutting-edge, green technology in support of the Jones Act.”

The moment is bittersweet for TOTE as it unfolds within the shadow of the tragic loss of the SS El Faro with all hands aboard during Hurricane Joaquin on October 1. The ship’s crew of 28 and five Polish nationals onboard were lost. The U.S. Navy, working with the National Transportation Safety Board (NTSB), has located the ship in waters 15,000 feet deep near the Crooked Island in the Bahamas.

The Isla Bella will be joined by the Perla del Caribe in Puerto Rico cargo service in the first quarter of 2016.

 


 

2. OHIO, LNG-READY PRODUCT TANKER
The 330,000 bbl Ohio was became the first product tanker to be built with the future consideration for the future use of LNG as fuel when it was delivered earlier this year to Crowley Maritime Corp. by Aker Philadelphia Shipyard, Philadelphia, PA.

New OhioWebThe Ohio received American Bureau of Shipping’s (ABS) LNG-Ready Level 1 approval, meaning Crowley has the option to convert the tanker to Liquefied Natural Gas (LNG) propulsion in the future.

The Ohio along with her three ships being built at Aker Philadelphia are based on a proven Hyundai Mipo Dockyards (HMD) design which incorporates numerous fuel efficiency features, flexible cargo capability, and a slow-speed diesel engine built under license from MAN Diesel & Turbo. The 600 feet long Ohio is capable of carrying crude oil or refined petroleum products.

Crowley’s Seattle-based, naval architecture and marine engineering subsidiary Jensen Maritime is providing construction management services for the product tankers. Jensen now has an on-site office and personnel at the Philadelphia shipyard to ensure strong working relationships with shipyard staff and a seamless construction and delivery program.

“We are excited to offer our customers cutting-edge technology available in these new tankers, which not only embraces operational excellence and top safety, but also offers the potential to be powered by environmentally friendly LNG in the future,” said Crowley’s Rob Grune, senior vice president and general manager, petroleum and chemical transportation. “Adding these new Jones Act tankers to our fleet allows us to continue providing our customers with diverse and modern equipment to transport their petroleum and chemical products in a safe and reliable manner.”


3. NEW MINI TANKER FOR NY HARBOR
Blount Boats, Inc., Warren, RI, delivered the Chandra B, a new mini-tanker for American Petroleum & Transport, Inc., Miller Place, NY. The 79 ft by 23 ft, double-hull bunkering tanker operates in New York Harbor and New Jersey supplying fuel to ferries, dinner boats, dredges, and other vessels.

ChandraBPropulsion power for the tanker is supplied by two EPA Tier 3-compliant Cummins Model QSL9, six-cylinder diesel engines rated at 330 hp at 1,800 rev/min with ZF Model W325 marine hydraulic gears that will have 4.91:1 reduction ratio. The self-propelled Chandra B is equipped with a 50 hp Wesmar hydraulic bow thruster, providing it with enhanced maneuverability.

Designed by Farrell & Norton Naval Architects, Newcastle, ME, the Chandra B is built to USCG Subchapter “D” specifications and is less than 100 gross tons. Farrell & Norton also designed one of the tank barges in American Petroleum & Transport’s fleet. The double-hull Chandra B will replace the 1979-built single hull Capt. Log in American Petroleum & Transport’s fleet.

American Petroleum & Transport (APT) has had to retire all of its single-hull tankers because of OPA 90 regulations.

APT vessels crisscross New York Harbor delivering ultra low sulfur diesel to clients such as Circle Line, New York Water Taxi, Great Lakes Dredge & Dock, and Sterling Equipment, as well as for the auxiliary engines of larger ships. The Chandra B has cargo fuel tankage is designed to hold a capacity of 56,450 gallons.

 


 

 4. SAKIGAKE, JAPAN’S FIRST LNG-POWERED TUG
This past year, NYK took delivery of Sakigake, Japan’s first LNG fueled tug. Built at NYK’s wholly owned subsidiary Keihin Dock Co’s Oppama shipyard, the 37.2 m x 10.2 m Sakigake is operated by Wing Maritime Service Corporation, mainly in the ports of Yokohama and Kawasaki. Wing Maritime also operates the hybrid tug Tsubasa.

Sakigake webThe Sakigake is equipped with two Niigata 6L28AHX-DF dual-fuel engines, each developing 1,618 kW. Propulsion is supplied by two Niigata Z-Pellers.

The DF engines can burn either LNG or diesel oil. The environmental advantages of operating on LNG as compared with conventionally powered tugs that use marine diesel oil is Sakigake emits about 30 percent less CO2, 80 percent less NOx, and no SOx.

While the project posed several challenges—the relatively small size and limited amount of space on the tug, and the large variation in engine power—Keihin Dock was able to achieve the desired level of environmental performance while maintaining the same hull form and steering performance of existing tugs. Keihin Dock worked closely with both Niigata Power Systems and Air Water Plant & Engineering Inc. to develop equipment for supplying LNG.

The project was supported by subsidies from Japan’s Ministry of Economy, Trade and Industry and the Ministry of Land, Infrastructure and Transport. ClassNK also provided joint research support.

 


 

5. JS INEOS INSIGHT, FIRST ETHANE-POWERED SHIP

Emblazoned on the JS Ineos Insight’s hull is the phrase, “Shale Gas for Manufacturing.” Built specifically to transport shale gas from the U.S. to Europe, the JS Ineos Insight is the first of eight 180m x 26.6m ethane gas carriers built by China’s Sinopacific for Denmark’s Evergas.

 

JSINEOSINSIGHT 2Named on July 14, the JS Ineos Insight can not only carry ethane, LPG or LNG, but can also burn ethane, LNG and conventional diesel in its two Wartsila 50DF dual fuel engines.

The eight Ineos ships will transport over 800,000 tons of ethane gas at -90°C per annum across the Atlantic from the U.S. to Norway and Scotland.

Classed by Bureau Veritas, the Dragon vessels were originally designed as dual-fuel LNG/diesel-powered vessels, with two 1,000 m3 LNG tanks on deck powering two Wärtsilä 6L20 DF main engines with a total output of 2,112 kW and two shaft generators with a total output of 3,600 kW power. The vessels will initially transport ethane from the U.S, to the U.K. Ineos refineries, the ability to also burn ethane was added to allow use of the cargo gas as fuel. 

At the christening of the JS Ineos Insight and the JS Ineos Ingenuity, Ineos Chairman Jim Ratcliffe says, “Today is a landmark day for both Ineos and Europe. We have seen how U.S. shale gas revolutionized U.S. manufacturing and we believe these huge ships will help do the same for Europe. Ineos together with Evergas has commissioned eight brand new ships, accessed hundreds of miles of new pipeline and built two enormous terminals to get U.S. Shale gas to Europe. The scale of the whole project is truly breathtaking.”

According to Bureau Veritas Business Development Manager Martial Claudepierre, the ability to burn ethane and LNG as fuel in the Dragon Class ships “is a major step forward in the use of clean fuels.” He says that BV worked with Evergas and the Danish Maritime Authority to verify and ensure that the use of ethane is at least as safe as required by the IGC and will not impair the engine compliance with MARPOL Annex VI.  

According to Claudepierre, using ethane required extra engine room ventilation and additional gas detection, plus modifications to the main engines including a lower compression ratio, different turbocharger nozzles and de-rating of the engine to cope with the lower knocking resistance of ethane. “But,” he says, “The gains in not carrying an additional fuel and in environmental performance from being able to burn clean fuel throughout the voyage are significant.”


 

6. MARJORIE C, NEW JONES ACT CONRO
Capable of carrying up to 1,200 cars and 1,400 TEU of containers, the Combination Container and Roll-on/Roll-Off (ConRO) vessel Marjorie C entered Jones Act service this year between the U.S. West Coast and Hawaii.

honolulu 13231 webBuilt by VT Halter Marine, Pascagoula, MS, the Marjorie C was engineered from a proven design by Grimaldi at Croatia’s Uljanik Shipyard. The 692 ft x 106 ft ConRO has a draft of 31 ft, deadweight of 21,132.5 metric tons, with nine decks. It has a stern ramp capacity of 350 metric tons. The ship has a service speed of 21.5 knots.

The vessel’s design incorporates the highest level of operating efficiencies as well as reduced environmental impacts. The sister vessel, Jean Anne, was Pasha Hawaii’s first Jones Act vessel and has been serving the Hawaii/Mainland trade since March 2005. The Marjorie C entered into service this past May.

The ship is named in honor of Pasha Hawaii’s President and CEO George Pasha, IV’s grandmother, Marjorie Catherine Ryan.

“After more than three and a half years of planning and construction, we are pleased to unveil a ship that has been designed to not only accommodate the varying needs of our customers, but a vessel that minimizes our carbon footprint through extensive fuel consumption efficiencies and other green technologies,” said Pasha Hawaii’s President and CEO, George Pasha, IV. “With the addition of the Marjorie C we can now offer customers increased service and capacity between the West Coast and Hawaii trade lane on vessels providing superior reliability and cargo protection.”


7. NEIL ARMSTRONG, FIRST OF NEW CLASS OF RESEARCH VESSELS
This past Halloween, the first-of-class oceanographic research vessel R/V Neil Armstrong (AGOR 27) set sail from Dakota Creek Industries, Anacortes, WA, to San Francisco, CA, on its inaugural voyage. As we went to press, the Neil Armstong was waiting its turn to pass through the Panama Canal on its way north to the Woods Hole Oceanographic Institute in Woods Hole, MA. The ship will be operated by the Woods Hole Oceanographic Institution under a charter party agreement with Office of Naval Research (ONR).

Armstrong AerialsC00069.16Designed by Guido Perla & Associates, Inc., Seattle, WA and owned by the U.S. Navy, Neil Armstrong is 238 ft x 50 ft with a depth of 22 ft and draft of 15 ft. The first of two research vessels, the Neil Armstrong has four main 1,400 kW diesel generators, two 876 kW propulsion motors, and two controllable pitch propellers. The ship has a sustained speed of 12 knots and maximum speed of 12.8 knots.

The ship was classed by ABS Under 90 meter rules A1, Circle E, AMS, ACCU, NIBS, Ice Class D0, UWILD, 46 CFR Subchapter U, SOLAS (Oceanographic Vessels), MARPOL.

The Neil Armstrong’s sister vessel, the R/V Sally Ride (AGOR 28), is also under construction at Dakota Creek Industries.

During acceptance trials, Mike Kosar, Program Manager for the Support Ships, Boats and Craft office within the Program Executive Office (PEO), Ships, says, “The results of these tests and the outstanding fit, finish and quality of the vessel, stand as a testament to the preparation and effort of our entire shipbuilding team. It reflects the exceptionalism of AGOR 27’s namesake, Neil Armstrong.”

Neil Armstrong Class AGORS incorporate the latest technologies, including high-efficiency diesel engines, emissions controls for stack gasses, and new information technology tools both for monitoring shipboard systems and for communicating with the world. These ships will provide scientists with the tools and capabilities to support ongoing research including in the Atlantic, western Pacific and Indian Ocean regions across a wide variety of missions.

The lab areas include the main lab of 1,023 ft2, the wet area of 398 ft2, computer area of 311 ft2, and staging area bay of 303 ft2.

Neil Armstrong will be capable of assisting with integrated, interdisciplinary, general purpose oceanographic research in coastal and deep ocean areas. The vessel will operate with a crew of 20 with accommodations for 24 scientists.

 


 

8. BARZAN, FIRST OF NEW CLASS OF GAS READY BOXSHIPS
Recently named in a ceremony at shipbuilder Hyundai Samho Heavy Industries’ Mokpo, South Korea, shipyard, Barzan is the first in a series of six 18,800 TEU containerships ordered by Dubai headquartered United Arab Shipping Company (UASC). It is the first vessel to receive classification society DNV GL’s new GAS READY notation. Her five sister ships and eleven 15,000 TEU vessels of UASC’s newest eco-ship generation, will also receive the notation.

Barzan 3The ships have been designed and constructed to enable a quick and cost efficient retrofit to LNG fueling at a later stage. The GAS READY notation, with nominators (D, S, MEc, AEi) demonstrates that the vessel is in compliance with the gas fueled notation rules, that structural reinforcements to support the fuel containment system (LNG tank) have been verified (S), that the main engines installed can be converted to dual fuel (MEc ) and that the auxiliary engines installed can be operated on gas (AEi).

“We believe that this vessel, as well as the rest of the vessels in our new building program, demonstrates our commitment to technical innovation and eco-effectiveness,” says Jørn Hinge, President and CEO of UASC. “For UASC, achieving optimum efficiency levels is not a single initiative or project, it is a strategy and an ongoing commitment, and we will continue to work with DNV GL on the remaining newbuild vessels that have the lowest levels of CO2 output in their class.”

As well as being LNG ready, Barzan and her sister vessels incorporate several innovative energy saving methods, including a Siemens’ Siship SGM environmentally friendly drive and power generation system.

The Waste Heat Recovery System (WHRS) converts thermal energy from the exhaust gas from the main engines into electrical power to maximize the efficiency of the system.

The Barzan was expected to have an EEDI (Energy Efficiency Design Index) value that is close to 50 per cent less than the 2025 limit set by IMO, with a CO2 output per TEU that is more than 60 per cent lower than a 13,500 TEU vessel delivered just three years ago.

Barzan has been constructed to DNV GL class rules with the notations: 1A1 Container Carrier DG-P Shore Power E0 NAUT-OC HMON (A1,C1,G4) CLEAN BWM-T BIS TMON NAUTICUS (Newbuilding) GAS READY (D, S, MEc, AEi).

 


 

9. CROWN POINT, NEW GENERATION GREEN TUG
Tidewater Transportation and Terminals, Vancouver, WA, recently took delivery of the Crown Point, the first in a series of three 102 ft x 38 ft towboats being built at Vigor Industrial in Portland, OR.

CrownPointThe three towboats are the first new vessels to be built for the Tidewater fleet in 30 years, and are critical for the company to meet the anticipated rising customer demand on the Columbia-Snake River system. “The launching of the Crown Point, and the forthcoming Granite Point and Ryan Point vessels, marks an important step for Tidewater,” says Marc Schwartz, Maintenance & Engineering Manager at Tidewater. The vessels will strengthen our fleet, as well as reinforce Tidewater’s commitment to our customers, community, and environment.”

Tidewater operates the largest barge transportation and terminal network on the Columbia-Snake River system. The Crown Point joins the company’s current fleet of 16 vessels and 160 barges. Tidewater transports a wide range of cargo among a network of ports, terminals and grain elevators throughout the entire Columbia-Snake River system, which stretches some 465 miles of waterways. We also operate five strategically located terminals and five pipelines with key intermodal connections to railroads, highways and other pipelines.

Designed by CT Marine, Naval Architects and Marine Engineers of Edgecomb, ME, the Crown Point is an environmentally friendly tug with EPA Tier 3 compliant diesel engines that reduce air emissions and improve fuel efficiency. Main propulsion is supplied by two Caterpillar 3516C EPA Tier 3 certified diesel engines producing 2,240 bhp, each at 1,600 rev/min. The engines drive two 92 in. x 100 in. fixed pitch, stainless steel propellers through CT28 Kort Nozzles capable of a service speed of 8 knots. Operating in the Columbia River Gorge high winds, extreme currents and swells can be considered normal piloting conditions. That’s why the Crown Pount abd her sister towboats are fitted with an enhanced steering system using four steering and four flanking rudders was designed. The towboat has a wheelhouse with exceptional all-round visibility through full height windows, leading edge navigation and communications equipment, and enhanced accommodations for the captain and crew.

“During the last year and a half, a great deal of effort went into designing, engineering and building a towboat that would meet or exceed performance parameters,” explains Bruce Reed, Tidewater COO and Vice President. “With crew endurance being a priority, we employed Noise Control Engineers, Billerica, MA to develop a sound and vibration control package for the vessel. By incorporating Christie and Grey vibration control mounts and comprehensive acoustic insulation, noise levels register at less than 60 decibels in the accommodations during vessel operation.”

Other equipment onboard the Crown Point includes two C7.1, Tier 3 generators, rated at 480v, 200 kW at 1,800 rev/min.  The generators are controlled through an automatic transfer system that ensures the vessel will recover from a generator power loss in less than 30 seconds. Deck machinery includes seven Patterson WWP 65E-7.5, 65-ton electric deck winches, with pilothouse remote operation and local push button control stations on the main deck. Each winch has Samson 1 3/8” Turbo 75 Synthetic Line.
 
In order to use the newest technology and minimize power usage, variable frequency drives were used in all major rotating machinery applications and LED lighting was employed in both interior and exterior lighting applications. The vessel is fitted with a Kidde NOVEC 1230 fire suppression system. Centralized fire detection and alarms cover both the machinery spaces and accommodations.

 


 

10. MULTRATUG 28, A HYBRID TUG
This past year, Netherlands-based towage and salvage specialist Multraship took delivery of Multratug 28, a Damen ASD 2810 Hybrid tug built at Damen Shipyards Galaţi, in Romania, as part of a fleet expansion program.

ASD Tug 2810 Multratug 28Classed by Lloyd’s Register, the hybrid Multratug 28 is 28.67m x 10.43m, with a maximum draft of 4.9m. The propulsion system includes two MTU 16V4000M63R diesel engines with one MTU 12V 2000 M41B propulsion genset of 800 kvA, 440V-60Hz. The battery pack are two 120 kWh. Two Rolls Royce US205 azimuth thrusters provide propulsion. The tug has a bollard pull of 62 tons, diesel direct speed of 13 knots, diesel electric speed of 8 knots, and battery pack speed of 4 knots.

The ASD 2810 HYBRID is developed to save fuel by 30% and to reduce emissions by 50%. To achieve this the vessel is provided with a propulsion system that can operate diesel-direct, diesel-electric or fully-electric. Fully-electric sailing on the batteries, with zero emissions and extremely low noise levels, is possible for time periods of up to one hour at a speed of 4 knots.

In June 2014, the first Damen ASD 2810 Hybrid was delivered to Iskes Towage & Salvage. Being green does not mean sacrificing power, the Bernardus still has a bollard pull of 60 tonnes. The Bernardus operates in the Port of IJmuiden near Amsterdam, the Netherlands.

“This hybrid tug is a unique concept,” says Dinu Berariu, Project Manager at Damen Shipyards Galaţi. “It features a diesel-direct, diesel-electric and battery powered propulsion system. This hybrid configuration will enable Multraship to lower fuel costs by up to 30 percent and emissions by up to 60 percent.”

Headquartered in the harbor city of Terneuzen, Multraship operates in the ports around the Scheldt estuary, in Zeeland seaports and the Belgian ports of Ghent and Antwerp, as well as the Bulgarian port of Burgas on the Black Sea.

Multraship’s fleet expansion program stems from its increasing customer base in the offshore sectors as well as growing demand for harbor towage services.


11. VASCO DE GAMA, FIRST 18,000 TEU BOX SHIP FROM A CHINESE YARD
As we went to press, the world’s third largest containership company, CMA CGM Group, Marseilles, France, was closing in on the acquisition of Singapore-based NOL, the world’s fourth largest. It successful, privately held CMA CGM would leapfrog over MSC to become number two in the world.

CMACGM Vasco de GamaA big part of CMA CGM’s success is its investments in larger, more energy efficient tonnage to improve pricing and economies of scale. An excellent example is the CMA CGM Vasco De Gama delivered this summer to CMA CGM by China State Shipbuilding Corporation (CSSC).

With a length of 399 m and breadth of 54 m, the 18,000 TEU vessel is the largest containership in the CMA CGM Group and is the first 18,000 TEU containership to be built by a Chinese shipyard. CSSC is also building two more of the giant box ships, the CMA CGM Zheng He and CMA CGM Benjamin Franklin.

Flying the U.K. flag, CMA CGM Vasco De Gama is equipped with the latest environmental technologies including a latest generation main engine, a twisted leading edge rudder with bulb from Germany’s Becker Marine Systems and an optimized hull design. These innovations decrease the vessel’s CO2 emissions by 10% compared to the previous vessel generation. With an estimated emission of 37g of CO2/km for each container carried, the giant containership provides one of the world’s greenest goods transportation options.

The ship’s environmental footprint meets the 2025 energy efficiency regulations.

CMA CGM Vasco De Gama calls at 11 different countries on CMA CGM Group’s French Asia Line (FAL) service between Europe and Asia.

CMA CGM is also building three 20,600 TEU containerships—the largest yet built—at Korea’s Hanjin Heavy Industries. Those three ships will each have full spade twisted rudders (TLKSR) from Becker Marine Systems and Becker Twisted Fins. Both Becker products will make a significant contribution to the vessel’s efficiency improvement.

 


 

12. ESVAGT FROUDE, SPECIALIZED WIND FARM VESSEL
As of September this past year, Denmark’s ESVAGT had new owners; 3i Infrastructure and AMP Capital acquired the shares of A.P. Møller-Maersk Group and ESE-Holding. While ESVAGT’s primary market will continue to be oil and gas support and standby rescue in the North Sea, the company is broadening its portfolio with a push into the offshore wind energy market.

EsvagtFroude243This past summer, ESVAGT entered the offshore wind industry with the christening of the world’s first purpose-built Service Operation Vessels at Siemens AG in Rostock and Hamburg, Germany.

The Service Operation Vessels (SOV), Esvagt Froude and Esvagt Faraday are each 83.7m x 17.6m, with a draft of 6.5m. Both of the Danish-flag SOVs were built in Norway by Havyard Ship Technology and are based on a Havyard 832 SOV design. The SOVs both have diesel-electric propulsion and DC power systems, enabling optimized fuel and energy efficiency and crew comfort. The service speed is 14 knots.

The SOVs are essentially “service stations at sea,” offering technicians a safe, efficient platform for wind turbine maintenance. Using the ship’s DP system, the ship can connect to wind turbines via its Ampelmann A-type Walk-to-work hydraulic gangway system offering a stable, safe platform to connect to the wind turbine.

Each offers accommodations for 60 people. The vessels are designed to reduce the level of vibration and increase the level of comfort for everyone onboard.

“As a supplement to the “Walk-to-Work” gangway, we have equipped the Service Operation Vessels with the newly developed ESVAGT Safe Transfer Boats (STB 7 and STB 12),” says Søren Nørgaard Thomsen, Managing Director for ESVAGT. “They are designed in-house based on more than 20 years of experience in boat development and more than 100,000 boat transfers. These boats will in a safe manner provide the industry with additional efficiencies and cost reductions.”

Each of the ships carry ESVAGT STB 7B Safe Transfer Boat, ESVAGT STB 12A Safe Transport Boat, ESVAGT FRB 15C Fast Rescue Boat.

A third ESVAGT SOV is on order and under construction at Havyard for delivery in 2016. The third ESVAGT SOV will service the 400 MW Dudgeon Wind Farm off the East Coast of England in the fall of 2016.

  • News

TOTE ship back under way after losing power

 North Star lost power Tuesday morning due to an electric problem, en route from Anchorage, AK, 45 nautical miles off Haida Gwaii, British Columbia.

The vessel drifted without power until at around 10 pm, when the crew’s efforts to rectify the problem succeeded according to reports, and the 2003 built Orca Class ship was able to resume its voyage under ist own power.

A Canadian Coast Guard vessel and two tugs had been headed for the vessel, but their assistance was not needed.

Delivered in 2003, the North Star is one of two “Built for Alaska” class TOTE vessels that are to be converted to LNG fueled propulsion but, as we reported earlier, both those conversions have been pushed back in the wake of the loss of the El Faro.

  • News

Three honored with AOTOS award

The AOTOS recipients shared the evening with a group of American seafarers who were recognized by the USS for specific acts of bravery at sea.

The evening closed with a remembrance for the the 28 American crew members and five Polish nationals lost in the sinking of the TOTE merchant ship El Faro during Hurricane Joaquin. It was led by Mr. Chiarello, who, rather than his own name, chose to have his AOTOS award engraved with the names of those lost in the tragedy.

“Each of us here at this maritime industry gathering will appreciate the gravity and the impact that the loss of the El Faro and her officers and her crew had on TOTE Maritime,” he said. “Within the firm, each of us has shared the anguish and the grief thrust so unmercifully upon the families and friends of those who were lost. Our hearts are torn bearing witness to their suffering.”

“This year,” he continued, “with the leave of the United Seamen’s Service and by the leave of those of you here with me this evening, I’d ask that we put aside any honor meant expressly for myself, and that we honor instead the valiant men and women that comprised the officers and the crew of the El Faro. This evening, they deserve the AOTOS award far more than I do.”

The ceremony included the reading of the names of those who were lost. Michael J. Sacco, President of the Seafarers International Union, read the named of his union members and Paul Doell, President of the American Maritime Officers, read the names of the AMO union members. Finally, Mr. Chiarello recited the names of the five Polish nationals.

For the 2015 AOTOS Awards, U.S. Senator Cory Booker served as General Chairman. Michael Sacco, President of the Seafarers International Union, was Dinner Chairman and F. Anthony Naccarato of American Maritime Officers Service and Joseph Cox served as National Committee Co-Chairmen.

Proceeds from the AOTOS event benefits USS community services abroad for the U.S. Merchant Marine, seafarers of all nations, and U.S. government and military overseas.

USS, a non-profit agency established in 1942, operates centers in six foreign ports in Europe, Asia, and Africa and in the Indian Ocean, and also provides seagoing libraries to American vessels through its affiliate, the American Merchant Marine Library Association.
Edward Morgan is President and Roger Korner is Executive Director of USS.
USS AOTOS Coordinator is Barbara Spector Yeninas.

  • News

TOTE pushes back Orca Class LNG conversions

NOVEMBER 9, 2015— The tragic October 1 loss of the El Faro means that TOTE Maritime is having to delay the planned conversion of the first of two “built for Alaska” 839

NASSCO delivers world’s first LNG fueled box ship

With the tragic loss of the TOTE ship El Faro still weighing heavily on the whole American maritime community, the delivery was not greeted with the celebrations that would normally mark an achievement of this magnitude.

 

The ship is the first delivered under a two-ship contract signed in December 2012 with TOTE. The two 764-foot long Marlin Class containerships will be the largest dry cargo ships fueled by LNG.

“Successfully building and delivering the world’s first LNG-powered containership here in the United States for coastwise service demonstrates that commercial shipbuilders, and owners and operators, are leading the world in the introduction of cutting-edge, green technology in support of the Jones Act,” said Kevin Graney, vice president and general manager of General Dynamics NASSCO.

The shipbuilder says the delivery is the result of a successful collaboration between industry and regulatory bodies. TOTE, NASSCO, the American Bureau of Shipping, and the U.S. Coast Guard worked hand-in-hand from the beginning of the project to the delivery of the Isla Bella. This included collaboration during the design approval, construction and commissioning the ship to safely and effectively operate on natural gas.