Search Results for: "Elliott Bay Design Group"

Double-ended ferries: The art of design

“Legally, a ferry is the continuation or prolongation of a highway over a navigable stream.” This quote is from the first Transactions of the Society of Naval Architects and Marine Engineers (SNAME), published in 1893. Given the impact of ferries upon society, it should come as no surprise that they have been a topic of interest to many naval architects for many years. The Pacific Northwest region of the United States contains a mix of islands, rivers, peninsulas and lakes. Salt water and fresh water transportation routes have been a critical part of the economic development of the region beginning with the native peoples and continuing today. Since the arrival of the first settlers in the 1850’s, power-driven ferries have been a common sight, linking the various communities through the movement of goods and people.

What is a double-ended ferry and why choose this configuration? A double-ended ferry is one where vehicles are loaded on and off both ends of the vessel and the direction of travel switches so the bow becomes the stern. The greatest argument for a double-ended ferry is when the route is short such as a river crossing. The time to maneuver the vessel so it can back in to the dock becomes a significant portion of the overall time between departures. The maneuvering time also consumes additional fuel and imposes the risk, however small, of any maneuver going awry. Another advantage is that the vessel will have the same handling characteristics every time it enters or departs a terminal. With its propulsion at each end, the double-ended ferry has excellent stopping power and superior maneuverability, especially if using an azimuthing or cycloidal propulsion system. This all contributes to safety, a critical factor for any ferry.

The origins of Elliott Bay Design Group (EBDG) go back to the late 1920’s with the establishment of W.C. Nickum & Sons. The earliest ferry projects were to modify the double-ended ferries from the San Francisco Bay area that were made superfluous by the bridge building activities there in the 1930s. Since that time EBDG has worked on a wide variety of vessel sizes and propulsion types, to suit routes ranging from short river crossings to 20 nautical mile transits of exposed water.

EBDG Ferries

The typical ferry we have designed has a V hull amidships with a narrow, flat of bottom at baseline. The side shell flares outboard with one or two knuckles between the heavy guard at the deck edge and the bottom. This configuration produces surfaces that are fully developable which facilitates construction. Typically, the waterline beam is 80% of the maximum beam. This shape provides excellent reserve buoyancy for damage stability and adds waterplane area as the vessel heels, thus improving intact stability. Where there is a draft limit, we increase the width of the flat of bottom. At the ends the waterline shape typically narrows to a fine entrance. Because the waterline beam decreases more quickly than the beam at deck, the effect is to create substantial sponsons. These are located sufficiently far above the bow wave to avoid increased wetted surface as the bow wave increases with speed. The shape of these sponsons also needs to consider wave slamming in rough weather, so a compromise is sometimes required between calm water resistance and speed in waves. The lower part of the hull at the ends is fitted with a skeg to support the shaftline (with traditional shafting on centerline) and to support the hull in dry dock. The skeg shape and volume are critical to the shape of the bow wave, hence we carefully consider the section area shape, including skegs. In more recent projects we have seen greater emphasis on reducing hull resistance, especially for ferries that operate on route lengths of greater than 2 nautical miles. Over the 40 to 50 year life of a ferry, small reductions in drag can result in significant fuel savings, and of increasing importance, lower emissions. Through the use of computational fluid dynamics we can find a balance between low resistance and ease of construction.

The double-ended ferry lends itself to a wide variety of propulsion configurations. Historically, these have ranged from steam-driven, side paddlewheels to a cable ferry powered by horses on a treadmill. In more recent times, we have seen the diesel engine become the dominant power source with a variety of means of putting the power into the water. Clearly, there is no preferred approach that works for every ferry. As designers, we look for the machinery configuration that meets the owner’s performance requirements with the best balance between reliability, maintainability, fuel efficiency and operability. This search typically takes the form of a propulsion study where we work with the owner to establish weighting criteria for the various aspects of the propulsion system. Typically, an owner will have strong opinions on what equipment and what configuration works well for his operation.

We are also seeing more clients interested in different forms of propulsion to reduce their overall energy consumption and thus reduce their environmental footprint. Owners are willing to trade off the simplicity and reliability of traditional geared diesel propulsion for reduced energy consumption through use of hybrid propulsion with electric drives, batteries for energy storage, and smart control systems. We are also seeing increased interest in alternative fuels such as liquefied natural gas, biofuels, and even hydrogen.

This year EBDG developed a physics-based simulation tool to evaluate different propulsion technologies for different sizes of ferries operating on different types of routes. This tool calculates hull resistance, weights, fuel requirements, and hull characteristics in an iterative fashion until the basic parameters of weight and buoyancy are in balance. The outputs from the tool are estimates of capital and operating costs as well as carbon emissions. We can now work with ferry operators to assess the economics of using technology to reduce environmental impacts.

So, what has 50 years taught us? First is that there always will be opportunities to improve the art of double-ended ferry design. Some recent trends include:

  • Access paths for passengers with disabilities
  • Critical scrutiny of fire risk and improved design of both passive and active fire protection measures
  • More vehicle clearances to improve speed of loading and unloading
  • Large passenger cabins with accessible restrooms
  • Seating arrangements to suit both individuals and larger groups
  • Greater security for vital spaces such as the engine room and pilothouse
  • Changing technologies and environmental issues are challenging to evaluate without a disciplined approach using solid engineering.

Ferry Good Ambitions

Considered the “forgotten borough” by some New Yorkers, Staten Island is on the verge of making its presence known in the city that never sleeps. The borough is a 25-minute ferry ride from the lowest tip in Manhattan, the Staten Island Ferry terminal at Whitehall.

Staten Island’s plan for renewal includes a $1.2 billion investment that will see the construction of the New York Wheel at St. George—an impressive 630 ft tall observation wheel that will rival England’s infamous London Eye, and feature 36 pods with accommodations for 40 in each, on a 38 minute ride/revolution, giving passengers a spectacular view of New York Harbor. Alongside the New York Wheel, New York City’s first outlet mall, Empire Outlets, is currently being constructed at St. George. The mall will feature 350,000 square feet of retail, 100 different shops and a 190-room hotel. Both the New York Wheel and Empire Outlets are expected to be operational by 2018.

How will tourist, potential shoppers, and New Yorkers alike make their way to these new attractions? They’ll be taking the Staten Island Ferry of course. The fleet, currently comprised of nine ferries, carries 22 million passengers a year—second only to Washington State Ferries’ fleet which carries over 23 million passengers annually.

And come 2019, the Staten Island Ferry fleet will welcome a new class to its fleet—the Ollis Class ferries.

Designed by Seattle-based Elliott Bay Design Group, the Ollis Class will mix the new with a bit of the old, providing passengers with a faster, more efficient ride to help meet increased ridership demand.

Its design will give the 320 ft x 70 ft ferries a striking resemblance to the beloved John F. Kennedy—which was commissioned in 1965 and is one of the oldest ferries in the Staten Island Ferry fleet. The Kennedy is one of three-that will be retired once the new Ollis Class series is delivered—the S.I. Newhouse and Andrew J. Barberi, both commissioned in 1981 are the other two.

The new Ollis Class will be double-ended and have capacity for 4,500 passengers; and like the Kennedy, will feature plenty of open air space, enabling passengers to enjoy the harbor view. The ferries will be built to ABS class requirements and will be powered by Tier 4 EMD engines and Voith Schneider Propulsion Drives.

The first of the three ferries will be named in honor of U.S. Army Staff Sgt. Michael Ollis, a native Staten Islander who died while saving another soldier in Afghanistan. He was only 24 years old.

The Staff Sgt. Michael Ollis ferry is expected to begin operations in 2019, with vessels two and three following later in 2019 and 2020.

Building the Ollis Class
As we were going to press, yards were putting in their final bids for the ferry project.

Among the yards that have expressed interest in the Ollis Class—at least according to the 2015 Industry Day attendance—are Conrad Shipyard, Eastern Shipbuilding Group, Fincantieri Bay Shipbuilding, and Vigor. All are builders of a variety of vessel types including ferries.

Conrad Shipyard—which has won a number of newbuild contracts this year — has had its share of ferry projects in the past, and is looking to keep the momentum going.

As Dan Conrad, Conrad Shipyard’s Senior Vice President and Director, explains, “Conrad Shipyard has a great track record on deliveries to the Puerto Rico Maritime Authority, the Texas Department of Transportation, the State of North Carolina and the Alaska Marine Highway, among others.” And he assures that his team is committed to pursuing the ferry market for years to come.

Most recently, Conrad’s Conrad Aluminum, Amelia, LA, yard delivered the M/V Woodshole to the Steamship Authority. The 235 ft x 64 ft ferry was designed by Elliott Bay Design Group and has capacity for 384 passengers, 55 automobiles or 10 eighteen-wheel tractor-trailers.

Eastern Shipbuilding Group is said to have the inside track on building the Ollis Class ferries, according to our sources. It would be quite a month for the Panama City, FL-based shipyard, which recently secured the lucrative contract to build the OPC for the U.S. Coast Guard.

Meanwhile, Fincantieri’s recent expansion is helping it position its Bay Shipbuilding yard for larger projects that can be produced and worked on, year-round. The three-acre expansion will pave the way for additional covered fabrication and erection facilities, an indoor paint and coating building, and outfitting shop that will enable FBS to increase its pursuit of ferry projects.

“This expansion allows us to increase our capacity and positions us to pursue a number of new construction markets, including large passenger ferries,” said FBS Vice President and General Manager Todd Thayse. “Our experience in building ferries and other complex passenger vessels dates back to our origins almost a hundred years ago, and includes the New York Staten Island Ferry now operating (the Guy V. Molinari). We have the people, the experience, the facilities, and the global resources of Fincantieri to ensure that we can tackle the most challenging construction projects.”

As for the shipbuilding powerhouse in the Northwest, Vigor, it’s currently working on six ferry projects at the moment, including the final two vessels in Washington State Ferries’ new 144-car Olympic Class.

AlaskaDayFerry2“Vigor has deep expertise in the ferry market with successful, on-time and on-budget deliveries of car ferries, passenger only vessels and catamarans. Six ferries are currently under construction at our Washington and Alaska yards and we expect ferry construction to continue to be a focus in our business development efforts, leveraging our considerable experience,” said Corey Yraguen, Vigor Executive VP of Fabrication. 

Just last month the Chimacum, the third in the series was christened at Vigor’s Harbor Island yard. The fourth vessel in the series, the Suquamish, is currently under construction and scheduled for completion in 2018, with operations set to begin in 2019.

The 144-car ferries are the result of a combined effort from a consortium of Northwest based companies, including Nichols Brothers Boat Builders, Freeland, WA, which has been in charge of building the superstructures for the144-car ferries.

In other Vigor ferry news, Vigor’s Ballard Facility (formerly Kvichak Marine) is building two 400 passenger ferries for the Water Emergency Transportation Authority of San Francisco (WETA). The Incat Crowther designed ferries will travel 27 knots and are scheduled for delivery Summer 2017.

And Vigor’s Ketchikan yard in Alaska has taken up the task of constructing the highly anticipated 280 ft Day Boat ferries for the Alaska Marine Highway System. The ferries, designed by Elliott Bay Design Group, are scheduled to be completed Fall 2018.

Vigor’s Executive VP of Business Development, Keith Whittemore, will be discussing Vigor’s ferry projects and more at the Marine Log Ferries Conference & Expo November 3 & 4, 2016, Seattle, WA. Attendees of the event will also have the chance to tour Vigor’s Harbor Island yard after the conference’s conclusion. Learn more at www.marinelog.com/events

Route Extension?
Staten Island Borough President, James Oddo sparked additional interest in the Staten Island Ferry system when he requested the New York City Department of Transportation explore the feasibility of extending the Staten Island Ferry’s route north of the Whitehall Terminal, possibly extending the service into midtown.

While the idea sounds great in theory, and will certainly foster a sense of “transit equality” for Staten Islanders who have a grueling commute (just ask our Editor-in-Chief, John Snyder), the route extension could prove problematic as there is currently no operating terminal in place in midtown, with the right infrastructure to handle such large vessels.

CITYWideHullNew York’s Ferry Boom
Of course, the Staten Island Ferry isn’t the only New York City ferry operation making waves. Operated by Hornblower NY, Citywide Ferry Service’s new fleet of ferries are currently under construction at Louisiana-based Metal Shark Boats and Alabama’s Horizon Shipbuilding. The contract catapults both yards into new markets—propelling Metal Shark into the commercial market in a very big way, and introducing Horizon to the ferry market.

A large portion of the Incat Crowther-designed ferries are expected to be delivered in time for Citywide Ferry Service’s launch Summer 2017. The service, according to the New York City Economic Development Corporation is projected to make 4.6 million trips annually.

The 85 ft ferries will have capacity for 150 passengers, as well as space for bikes, strollers and wheelchairs. The Citywide Ferry Service is expected to add five new routes on the East River.

Meanwhile, another well-known ferry operator in New York harbor is upping its stake in the market. Seastreak says its “raising the bar in fast passenger ferry service” with the addition of a new, high-speed, 600-passenger, catamaran in 2017. The ferry will be the highest passenger capacity USCG K-class high speed ferry in the U.S.

The addition of the new ferry will help Seastreak meet growing passenger demand on the New Jersey to New York route.

SeastreakDesigned by Incat Crowther, the ferry, the first in Seastreak’s new Commodore class, will be 147 ft 8 in x 39 ft 5 in. The vessel was designed to provide Seastreak with an operational advantage. The ferry’s boarding arrangement will include large forward and aft side gates as well as an adjustable bow ramp. This will help facilitate turnaround times at terminals.

The first vessel in the series will be built at Gulf Craft Shipyard, Franklin, LA. Construction is to be completed by 3rd quarter 2017. Meanwhile, Seastreak expects a keel to be laid for a second Commodore class vessel before the end of 2016.

The Commodore Class ferry will be powered by four MTU 12V4000 M64 EPA Tier III main engines, each delivering 1,875 hp at 1,800 rev/min and driving Rolls-Royce KaMeWa 63S4 waterjets. The vessel will also feature LED lighting and an advance energy efficient HVAC system.

The ferry’s main deck will hold 234- passengers; mid deck will seat 271 passengers inside and 52 passengers outside; and the third deck features 160 exterior seats as well as the vessel’s wheelhouse.

Seastreak is also initiating the upgrades and repowering of several members of its current operating fleet. First one up will be the Seastreak New York, which is expected to enter into drydock this coming winter. At press time, the bids were out to multiple yards. The repowering project is expected to be completed by the end of the 1st quarter 2017.

Florida gets in the game
New York isn’t the only city getting its ferry action on. This month, service officially begins on the Cross-Bay Ferry system—connecting St. Petersburg and Tampa, Fl. The service is part of a pilot project intended to introduce residents and visitors to water transit services in the area. 

The route will be operated by the 98 ft twin-hull aluminum catamaran, Provincetown IV. The ferry was originally built for Bay State Cruise Company, Boston, MA, by Gladding-Hearn Shipbuilding, the Duclos Corporation, Somerset, MA. Designed by Incat Crowther, the 149-passenger ferry can operate at a top speed of up to 30 knots on the 50 minute route.

“We only have one vessel, and one crew, so we cannot do everything, but we do mean to showcase this technology to a lot of people and test ferry service in a variety of ways and markets,” said Ed Turanchik, policy advisor for the project.

Organizers of the project are testing the service on a variety of different market segments including tourist and local commuters, and the entertainment and sports markets. Learn more about the project at CrossBayFerry.com.

VDOT accepts ferry bids
Last month, the Virginia Department of Transportation was accepting bids for a new 70-vehicle ferry based on a design by Alion Science. The boat would be a replacement for the VDOT’s oldest ferry, the Virginia, built in 1936. Construction on the steel-hull ferry is to start this fall with completion in 2018.

Gladding Hearn delivers high-speed ferry
Gladding-Hearn Shipbuilding, the Duclos Corporation, recently delivered a new 493 –passenger, high-speed Incat Crowther designed ferry to Hy-Line Cruises, a division of Hyannis Harbor Tours, Inc., Hyannis, MA. 

The all-aluminum ferry is 153.5 ft x 35.5 ft and is powered by four Cummins QSK60-M, EPA Tier 3 diesel engines each delivering 2,200 bhp at 1,800 rev/min. Each engine will power a Hamilton HM721 waterjet through a Twin Disc MG61500SC horizontally-offset gearbox.

Incat Crowther says the ferry represents an evolutionary step from its previous designs built by Gladding-Hearn. According to the designer, the capacity increase had to fit within docking constraints, enforcing upper limits on both the length and beam of the vessel. To meet the requirements, it moved the wheelhouse to a third deck, freeing up the front end of the second deck for VIP passengers.

The restructuring shifted boarding arrangements, with the addition of a middeck boarding door and both forward and aft stairways improving passenger flow and turnaround times, says Incat.

The ferry will provide year-round service between Hyannis and Nantucket Island. It will top speeds of over 34 knots when fully loaded at a deadweight of more than 64 tonnes, said Peter Duclos, President of Gladding-Hearn.

The new ferry is also outfitted with a Naiad Dynamic trim-tab, ride-control system to help improve passenger comfort and safety. The system’s motion sensor measures the relative movement of the vessel and transmits a signal to the hydraulic device to counter the boat’s actions through the waves.

Europe’s Ferry Market
The European ferry market remains in the forefront of technology. The continent that gave the world emission-free, battery operated ferries, will now give forth, the world’s largest hybrid ferry.

Just last month, Norway’s Color Line reported that it would order the largest hybrid ferry ever built. The ferry, which will feature batteries charged via green electricity from dedicated shore side facilities, or recharged on onboard via the ship’s generators, would double the capacity of the vessel it will replace.

Tentatively named the “Color Hybrid, the ferry will be 160 m long and have capacity for 2,000 passengers and up to 500 cars. The ferry is expected to be put into service on the Sandefjord, Norway to Stromstad, Sweden route in 2020.

DAMENwaterbusAnd not to be outdone, Damen says its ready to launch its first composites-construction Water Bus. As we were going to press, the prototype was prepping to begin sea trials.

The Damen Water Bus is the first vessel for public transportation produced at Damen Shipyards, Antalya, Turkey. Its benefits are plentiful—the vessel, which features a slender hull, making it lighter than a traditional aluminum vessel, requires less fuel consumption, less maintenance, will suffer from no corrosion or fatigue problems. It can travel at speeds up to 21 knots and has capacity for 100 passengers.

Damen’s Design & Proposal Engineer, Fast Ferries, Marcel Elenbaas, explains that the Water Bus is built using high quality vacuum infusion technology that creates a “difficult to penetrate closed cell, epoxy sandwich structure.”

Damen says the vessel is ideal for highly congested urban areas, and is a simple and efficient way for using a city’s natural waterways system.

The Water Bus is equipped with two, forward facing, double-screw podded propulsion units—helping to reduce vibrations. Damen says the vessel can be easily adapted to customer specifications, and because of the nature of the composites’ production process, delivery to clients will be quick.

  • News

Maxum Petroleum unveils latest bunkering vessel

AUGUST 29, 2016 — The Global Provider, Maxum Petroleum’s newest bunkering vessel, is currently under construction at Jesse Co. in Tacoma, WA, and expected to enter service in January 2017. Scott Prince,

  • News

Maxum Petroleum unveils latest bunkering vessel

AUGUST 29, 2016 — The Global Provider, Maxum Petroleum’s newest bunkering vessel, is currently under construction at Jesse Co. in Tacoma, WA, and expected to enter service in January 2017. Scott Prince,

A return to its maritime roots

“Anyone studying the growth of the city …cannot help but be struck by the fact that New York was first a port before it was anything else.” This William Bixby quote adorns the perimeter of South Street Seaport in New York. The city is one with a rich maritime history—operations on both the East and Hudson River have played a vital role in shaping the city and its people’s history—but its one often forgotten by most New Yorkers navigating their way through the hustle and bustle of the concrete jungle.

New York was originally the landmass south of Wall Street on the island of Manhattan, as time went on, however, New Yorkers began expanding out into the neighboring boroughs and eventually made their way to the suburbs. Today, Manhattan is still the city’s center with New Yorkers spending, on average, 40 minutes traveling to or from work each day, according to the New York Times —more than any other city in the United States. But one mode of transportation often not used by New Yorkers, are ferries operating on New York’s marine highway, the East River. Granted, most communities in the city’s five boroughs don’t have access to such ferry operations—except for Staten Island which has the government operated Staten Island Ferry, most ferry operations are private and confined to Manhattan and parts of Queens and Brooklyn—but that’s all about to change thanks to a partnership between the New York City Economic Development Corporation (NYCEDC) and Hornblower, Inc.

Hornblower is no stranger to New York, the company’s subsidiary Statue Cruises currently provides transportation to the Statue of Liberty National Monument and Ellis Island. Hornblower also debuted its New York Hornblower Hybrid, a ferry/luxury yacht, back in 2011.

Citywide Ferry
Promising a fast, frequent and convenient service operating year round, the Citywide Ferry will bring a total of six routes that, when combined, will cover over 60 miles of waterways. The creation of the service will help meet growing waterfront community demand, and help lighten the load for an already overworked, overcrowded, and outdated MTA subway system.

Hornblower will have the option to purchase at least 17 new ferries, as well as chartering already existing ferries to help meet the system’s demand. Our sources tell us Hornblower will likely contract up to three shipyards, which will each build three to four ferries in the first round of construction. One of the shipyards is believed to be Metal Shark Aluminum Boats, Jeanerette, LA. It recently received a Small Shipyard Grant from the Maritime Administration for its Franklin, LA, shipyard.

The city is providing the service with $55 million in infrastructure upgrades—this includes the building of ten new ferry landings and the repair/refitting of six others. Additionally, the city will provide $10 million for startup costs, such as vessel upgrades and ticketing machines and $30 million in operation support per year for a period of six years.

NY Waterway’s East River Ferry boats are also to be fully integrated into the Citywide Ferry fleet. The transition is expected to be complete by the summer of 2017.

The Citywide Ferry service will roll out in two phases. Phase one will initiate service to Astoria, South Brooklyn and Rockaway in 2017. Phase two to Soundview (Bronx) and Lower East Side will launch in 2018.

The catamaran ferries, which will be based on an Incat Crowther design, say our sources, will carry at least 149 passengers, will be fully accessible to those with disabilities, will be equipped with WiFi, and will operate using low emission engines and “Low Wake” technology. The ferries will offer passengers 360 degree views, and LED screens will be fitted on board displaying information and entertainment.

The ferries, like its Staten Island ferry counterpart, will also offer food and beverage options on board.

However, unlike the Staten Island Ferry, which is free, the Citywide Ferry will cost passengers $2.75, the same price as a New York City Metro Card swipe on the city busses or Subway system.

Passengers however will not be able to transfer from the train/bus to the Citywide Ferry—meaning the service won’t be fully integrated with the NYC mass transit system. However, free transfers will be available between ferries. The ferries will operate from 6:30 am to 10 pm, seven days a week.

LandingsFerry Landings for Citywide Ferry
A total of 10 ferry landings—the barges were designed by Blancke Marine Services, Woodbury, NJ, and the topside outfit by project design manager McLaren Engineering—will be built for the service, and are expected to be ready in time for the service’s launch in 2017.  The barges for the landings are being built at May Ship Repair on Staten Island.The ferry landings will be 35 ft wide by 90 ft long.

The landings are being fabricated for Soundview, Bronx; Astoria, Queens; East 62nd Street, Manhattan; Roosevelt Island (between Manhattan and Queens); Long Island City, Queens; Stuyvesant Cove in Manhattan; Grand Street (Lower East Side Manhattan); Red Hook, Brooklyn; Bay Ridge, Brooklyn; and the Rockaways.

According to NYCEDC, upon completion, the landings will be equipped with canopies and wide screens to provide passengers a sheltered space from inclement weather. Additionally, the barges will feature ticket machines and waiting areas, allowing for minimal upload impact at the landing sites, says the NYCEDC.

Helping the waterfront community
The Citywide Ferry system is projected to add 155 new jobs to the New York Harbor. Additionally, the company will participate in the City’s HireNYC program which will match qualified applicants from neighborhood-based WorkForce1 training centers, meaning that the folks working at the landings will be qualified people from the communities.

Crews are expected earn more than $15 an hour and will also receive a comprehensive benefits package.

Further exemplifying its desire to highlight and foster the growth of the city’s maritime tradition, NYCEDC has partnered with a number of federal, state and city agencies to launch the Waterfront Navigator—a website that will serve as an official source of information for businesses and waterfront property owners seeking to learn what tools are available to them. In addition, the website, WaterfrontNavigator.NYC, will help facilitate environmental permit applications for waterfront construction.

NYCEDC President Maria Torres-Springer says that the “one-stop” user friendly website is where regulatory agencies from the federal, state and local levels joined forces to create a resource for simplified permit planning.

Staten Island Ferry
One constant presence on the New York Harbor has been the Staten Island Ferry (or at least some incarnation of it). Formal service on the route between Manhattan and Staten Island was established in 1817 under the Richmond Turnpike Company when it began sailing the steam-powered Nautilus. Eventually, the City of New York took over the operation in 1905 when it ordered five new ferries for the route, each named after the city’s five boroughs: the Bronx, Brooklyn, Queens, Manhattan and Staten Island.

Since then, a number of new ferries have been built and retired for the now famous orange Staten Island fleet. Currently, the fleet is made up on nine ferries providing service to 22 million passengers a year. And with the population on the island growing, demand is high for a new series of ferries that provide faster, more efficient ride.

Earlier this year, New York City Mayor Bill de Blasio confirmed that the NYC Department of Transportation (NYC DOT), the agency that runs the Staten Island Ferry operation would be ordering three new ferries for the route. This would enable the operator to retire three of the older ferries in the fleet including the 51-year-old John F. Kennedy, commissioned in 1965. Additionally, the S.I. Newhouse and Andrew J. Barberi, both commissioned in 1981 will also be put out of service. The two hold the distinction of having the highest passenger capacities, with room for 6,000 passengers.

The three new 320 ft x 70 ft ferries are designed by Seattle-based Elliott Bay Design Group, and are expected to bare a striking resemblance to the beloved Kennedy, with lots of open-air space. The ferries will also be double-ended and have capacity for 4,500 passengers.

The ferries, which will be built to ABS class requirements, will be powered by Tier 4 EMD engines and Voith Schneider Propulsion drives.

Glosten Inc. will act as the Owner’s Representative [Team] providing all construction management and oversight on behalf of the NYCDOT.

Industry Day Reveals Interested Parties
At the New Staten Island 4500 Class Ferry Industry Day event held last September at the Whitehall Terminal, the NYC DOT laid out details on the Ollis class project as well as its target dates.

The city operator expects for bids to be due 90 days after it was advertised (sometime in the 3rd Quarter of 2016)—we should note that as we were going to print, the NYC DOT released the Request for Bids (RFB) for construction of the ferries; and expects to issue a Notice to Proceed (NIP) contract start by the 4th Quarter of 2016. The NYCDOT expects all three vessels to be completed within 1,460 consecutive calendar days following NIP.

Looking at the Industry Day’s attendance sheet, one could wager a guess on what yards will be bidding on the project. Conrad Shipyards, Dakota Creek Industries, Eastern Shipbuilding Group, Fincantieri Bay Shipbuilding, GD NASSCO, Leevac Shipyards, Vigor Industrial, and VT Halter Marine were all in attendance.

The first of the three new ferries, the Staff Sgt. Michael Ollis, is expected to begin operations in 2019. The ferry is named in honor of the late U.S. Army Staff Sgt. Michael Ollis, a native of the New Dorp area of Staten Island, who died while saving a Polish soldier in Afghanistan. He was only 24 years old at the time of his passing. 

Vessels two and three in the Ollis Class are to be delivered later in 2019 and 2020.

FTA awards ferry grants, WETA expands
The Staten Island Ferry system will also get a boost from the U.S. Department of Transportation’s Federal Transit Administration (FTA). Under its Passenger Ferry Grant Program a total of ten projects received a combined $59 million in funding. Of that, $6 million will go to the NYC DOT, which will use part of the funds to replace the deck scows (barges) for the Staten Island Ferry Dockbuilding Unit as well as upgrade the Staten Island Ferry Maintenance Facility Ramps and Racks.

WETAThe San Francisco Bay Area Water Emergency Transportation Authority (WETA) was also a recipient of the FTA grants. Under the program, WETA will receive $4 million to expand berthing capacity at the Ferry Terminal from its current four berths to six, and the construction of three new ferry gates. According to WETA the expansion project is set to begin Summer 2017. WETA says the project will improve landside conditions at the Ferry Terminal by providing new amenities, such as weather-protected canopies, the construction of a new plaza area south of the Ferry building, the extension of pedestrian promenade areas and other public access improvements. The expansion will also enable WETA to stage emergency water transit services in the event of a regional transportation disruption or disaster.

“Improvements to the San Francisco Ferry Building ‘hub’ is a key element to expanding our services on the Bay, and validation of the important role ferry service will play in the future of the Bay Area’s transit infrastructure,” says Nina Rannells, Executive Director of WETA.

The improvements come at a time of growth for WETA. The ferry system in the Bay area has experienced a boost in ridership over the last few years and to help meet increasing passenger demands WETA has invested in both new ferries and is currently in the process of converting/refurbishing other members of the fleet.

Last April, the operator awarded Kvichak, a Vigor company, the contract to build two all-aluminum 400-passenger only ferries. The 135 ft x 38 ft catamarans, currently under construction—the hulls are being built by Kvichak and the superstructure is by Nichols Brothers Boat Builders, were designed by Australia’s Incat Crowther, and will be equipped with MTU 12V4000 M64+ EPA Tier III engines rated at 1,950 bhp at 1,830 rev/min. The engines, coupled to ZF7600 reduction gears, will enable the ferries to reach a top speed of 27 knots. Delivery of the ferries is expected to occur November 2016 and April 2017.

Beyond the newbuilds, WETA also has two of its existing ferries, the MV Intintoli and MV Gemini, undergoing upgrades at San Diego-based Marine Group Boat Works.

At press time, the MV Intintoli was nearly done undergoing a propulsion upgrade. Meanwhile, the MV Gemini is currently undergoing a minor refit to help improve vessel reliability and passenger amenities, according to WETA’s Ernest Sanchez. Among the improvement is the refurbishment of shafts, propellers and rudders, and the replacement of bearings; plus the overhaul of the Selective Catalyst Reduction System as well as the main engines, HVAC, electrical, plumbing, emission and fire and lifesaving safety systems.

The Gemini’s conversion from a Subchapter T to a Subchapter K ferry—means an increase in passenger capacity from 149 to 225 and an upgrade of the interior spaces. The MV Gemini project will be completed this summer.

WSF phases out older ferries
While New York City and San Francisco get ready to up the ferry ante, up in the Northwest, the largest ferry operator in the U.S., Washington State Ferries continues its newbuild program in the hopes of phasing out older members of its fleet and improving safety and efficiency. The ferry division of the Washington State Department of Transportation recently announced that construction has officially began on the state’s newest ferry, the Suquamish.

The keel was laid last month at Vigor’s Harbor Island Shipyard in Seattle, where Governor Jay Inslee, State Senator Christine Rolfes, and Suquamish Tribal Chairman Leonard Forsman struck ceremonial welds on to the keel—Inslee welded his granddaughter’s initials, Rolfes welded an orca whale, and Forsman welded a circle with a dot, an ancient design element found in the early Suquamish winter village.

The Suquamish is the fourth ferry in the Olympic Class, which was designed by Seattle-based Guido Perla & Associates, Inc., and is based on the Issaquah class design, WSF’s most versatile ferry. The Olympic class ferries each have capacity for 144 cars and 1,500 passengers.

While construction has officially started on the Suquamish, the third ferry in the class, the Chimacum, is about 75 percent complete. In April, Chimacum’s superstructure, built by Nichols Brothers Boat Builders, was joined to its hull at Vigor.

The Chimacum is expected to go into service on the Seattle/Bremerton route in 2017. WSF is expected to take delivery of the Suquamish in the Fall of 2018.

The total cost to build four Olympic Class ferries is $515.5 million.

The hope for WSF is to continue “investing in long-term ferry build programs” in order to keep up with increasing ridership numbers—WSF carries more than 23 million riders and 13 million cars, annually— in addition to replacing aging members of the fleet, said Matt Von Ruden, Director of vessels for WSF.

One of those aging vessels, the Hiyu was officially retired last month after nearly 50 years of service. Considered cute by many, it was even affectionately called “Baby Hiyu” by some, the ferry was tiny in size—only 162 ft long with a maximum capacity for 199 passengers and 34 vehicles—but lacked ADA accommodations and incurred high maintenance costs, rendering it obsolete.

“While the Hiyu was a good and dependable vessel, its tiny size means it is no longer the best option for moving passengers and commerce across the Puget Sound,” said Elizabeth Kosa, Washington State Ferries’ Chief of Staff. “The addition of modern, bigger and faster Olympic Class vessels to the fleet means its time to bid farewell to the Hiyu.”

WOODSHOLE1Conrad christens MV Woods Hole for Steamship Authority
As we were going to press, the Woods Hole, Martha’s Vineyard and Nantucket Steamship Authority was prepping to take delivery of its newest ferry, the M/V Woods Hole.

Built by Conrad Shipyard, the ferry, was christened on May 20th at Conrad Aluminum, Amelia, LA. Called a “beauty” and a “perfect example of the ships built by Conrad…quality in every detail,” by Project Manager Thomas Rachal, the ferry features state-of-the-art technology, WiFi stations, a snack area, and oversized reclining leather seats for passenger comfort.

The M/V Woods Hole, designed by Seattle-based Elliott Bay Design Group (EBDG), is 235 ft x 64 ft with a maximum draft at 10 ft 6 inches. It has a passenger (plus crew) capacity of 384, car capacity of 55 and the freight-vehicle deck is designed to carry ten 100,000 lb tractor-trailers.

It features a highly shaped bulbous bow to help minimize wave and improve fuel efficiency. Further improving efficiency are Becker high-lift rudders, which, when working in combination with the controllable pitch propeller system and vectorable bow thruster provide the ferry with high maneuverability in a small area.

Powering the M/V Woods Hole are a pair of MTU 16V4000 EPA Tier 3 engines providing 2,680 hp connected to Hundested controllable pitch propellers, generating service speeds of 12 to 14 knots and sprint speeds of 16 knots.

The ferry is expected to go into service sometime this month providing service between Woods Hole and Martha’s Vineyard.

Alaska Class Ferries Get Named
Meanwhile, another EBDG-designed ferry series, the new Alaska Class ferries being built for the Alaska Marine Highway System have officially been named. Following a call to students from Alaska’s Governor Bill Walker to submit essays on what the ferries names should be, two students, seventh grader Malea Voran and 10th grader Taylor Thompson, won the naming rights.

The two new ferries will be named Tazlina, which Voran explained in her essay was an Ahtna Athabaskan name that means “swift river”, and the Hubbard, after the Hubbard Glacier, which Thompson says “surpasses all others (glaciers) in its beauty and magnificence. A ferry named after it would surely do the same.” The Hubbard Glacier has actually thickened over the years as opposed to melting like its other glacier counterparts, making it an anomaly to the science community.

The 280 ft ferries are being built in modules by Vigor’s Ketchikan Alaska Shipyard. Once the modules are complete—with pipes, electric cable raceways and other systems installed—they will be set in place and attached to the ships.

The two-day boat Alaska Class ferries will seat up to 300 passengers and carry 53 standard size vehicles. Delivery is expected from the yard in 2018.
 

Conrad christens Woods Hole ferry

MAY 26, 2016 —Conrad Shipyard reports that the M/V Woods Hole, a 235-foot ferry built for the Steamship Authority of Woods Hole, MA, was recently christened at Conrad Aluminum in Amelia, LA.

  • News

A look at the best passenger ships of 2015

MV Veteran, 80m Ice Class Ferry
Delivered this past October by Damen Shipyards Galati, Romania, the RoPax ferry MV Veteran is built to handle the tough environment of the Arctic region. The 200-passenger vessel was designed to operate specifically in icy waters by a partnership comprised of Fleetway Inc., for the Government of Newfoundland and Labrador, and Denmark’s Knud E. Hansen.

The MV Veteran can handle 40 cm-thick floating ice at 4 knots, says Jan van Hogerwou, Damen Manager, North America. The ferry’s “rudders, hull and propellers have been strengthened and are outfitted with extra plate thickness for heavy winter conditions.”

Three MTU 16V 4000M23S engines generate 1,700 kWe, 400V, at 1,800 rev/min. The emergency genset is provided by one Volvo D16 engine generating 440 kWe 440V, at 1,800 rev/min. Its propulsion set is made up of two 1,600 kW Rolls-Royce azimuth thrusters, Electric Drive, and two 2,600 mm ice strength fixed pitch propellers.

And while the vessel was built in Romania, its very much a Canadian product, with several Canadian companies providing services for the vessel, with products including electrical equipment to fire-fighting systems.

MV Veteran has roll-on, roll-off capacity for 60 vehicles, is 80.9 m long with a beam of 17.2 m and can operate at a cruising speed of 14 knots.

The first in a two-vessel contract, the Veteran, and its sister ship the MV Legionnaire, are part of a large “lifeline” vessel replacement program being undertaken by the Provincial Government to modernize its fleet. The fleet transports over 900,000 passengers, 400,000 vehicles and 20,000 tonnes of freight with more than 50,000 arrivals and departures every year.

MV Veteran is class by ABS +A, Vehicle Passenger Ferry, Ice Class 1AA, Near Coastal, Voyage Class II, E, +AMS, HAB+, ACCU GP.

Product Director at Damen Ferries, Henk Grunstra, acknowledges that the Ice Class 1A Super certificate in the highest available for ferries. He also says the vessel has redundant systems in place for safe operation.

MV Veteran features 127 seats in the forward passenger lounge, 88 seats in the aft passenger lounge, 15 single crew cabins.

 


The Sally Fox, 105 ft fast ferry
Sally Fox Maiden VoyageLast April, a new foxy lady on the Puget Sound made her presence felt. Built by All American Marine, Bellingham, WA, the MV Sally Fox, is the first of two new ferries ordered by King County’s Marine Division. The vessel is also the first ferry to be built under the U.S. Coast Guard’s Sub-Chapter K rule, and delivered under the new 5A Space Performance Guidelines issued.

The 5A Space Performance Guidelines make it possible for a boat builder, such as All American Marine (AAM), to design and implement suitable structural fire protection in very low fire load spaces in the construction of weight-sensitive high-speed passenger vessels.

The 105 ft x 33 ft catamaran was designed by AAM, however, for its wave piercing hull design the builder called upon New Zealand-based naval architecture firm Teknicraft Design Ltd. The wave piercing hull design helps reduce drag and enhance passenger comfort.

Sally Fox is powered by twin Cummins QSK-50 tier II engines rated at 1,900 rev/min. The 250-passenger ferry operates at a service speed of 28 knots across the Puget Sound from Vashon Island to downtown Seattle.

Special attention was paid to each passenger deck’s layout in order to facilitate and streamline the boarding and disembarking process. Additionally, the new ferry features some green technologies, for example, instead of paint, the decks are covered with a peel-and-stick non-slip tread, while the exterior of the superstructure is wrapped in UV-stable vinyl.

Funded by federal grants, the new water taxi will replace the Melissa Ann, a 27 year old vessel leased to operate on the route since 2010. Its sister ferry, the MV Doc Maynard was delivered by AMM September 2015.

 


Baynes Sound Connector, Longest Cable Ferry
Next month, BC Ferries’ first ever cable ferry, the Baynes Sound Connector will make its long awaited debut and begin operations. Built by Seaspan’s Vancouver Shipyards, the 78.5 m ferry will accommodate 150 passengers and 50 vehicles on a 1,900 meter (about 1.9 km) route, making the ferry one of the longest cable ferries in the world.

BaynesSoundConnectorSABaynes Sound Connector will travel at a speed up to 8.5 knots between Buckley Bay and Denman Island. The ferry operates on one drive cable, and two guide cables along the route on the Baynes Sound Channel. Operator BC Ferries expects the cable ferry will help reduce operational costs, saving the company over $80 million over its expected 40-year service life; will have a smaller environmental footprint and lower fuel emissions.

While the news of the Baynes Sound Connector is exciting, the project was initially met with fears from the local community that felt a ferry operating on cables would be unsafe and wouldn’t be able to meet BC’s promise of a more efficient ferry on the run.

BC Ferries has stated that the ferry has been designed and built to safely operate in the Bayes Sound environment, which is a relatively low marine traffic area, and was tested in some of the worst weather conditions.

To further safety, it was recently announced that transit lights have been installed at both the Buckley Bay and Denman West terminals to secure safe passage for the cable ferry and other vessels in the area. A green light would indicate that the Baynes Sound Connector is docked at a terminal and boaters can safely cross the channel. A red light indicates the ferry is in transit, and it may not be safe for other vessels to cross the channels since the cables in operation may not be fully submerged.


Texelstroom, CNG Hybrid Ferry
TexelstroomBuilt by Spanish shipbuilder Construcciones Navales del Norte—La Naval, the 135m Texelstroom will offer its owner, Royal N.V. Texels Eigen Stoomboot Onderneming (TESO), a unique energy efficient vessel package that will combine a variety of green energy sources to help reduce its environmental impact when its delivered 1Q 2016.

The 1,750-passenger ferry is equipped with a hybrid propulsion system comprised of dual fuel (diesel/CNG) generating sets and a battery system, feeding the propulsion electric motors. The ferry is expected to operate mainly on the natural gas that will be storing two batteries of Compressed Natural Gas (CNG) bottles installed on the top deck.

The double-ended ferry was designed with two separate navigation bridges and two independent engine rooms. One engine room is fitted with two ABC diesel engines, each generating 2,000 kW of power; and the other engine room is fitted with two ABC dual fuel engines, also generating 2 x 2,000 kW. Each ship end will be fitted with two Rolls-Royce azimuth propeller.

The ferry, designed by La Naval in close cooperation with TESO and C-Job Naval Architects & Engineers, and classed by Lloyds’ Register, will also feature over 700 m2 of solar panels, helping the ship to be more sustainable. Additionally, according to LR, the ferry’s design is supported by the European Union’s “I.Transfer” program. The goal of the program is to make ferry transport accessible and sustainable.  

The ferry will be ice class, featuring a strengthened hull to operate through winter ice, and will have a notation for Passenger and Crew Accommodation Comfort (PCAC) to ensure a safe and comfortable journey for passengers and crew.

Texelstroom will provide services in The Netherlands, between the island of Texel and the port of Den Helder. The ferry, which will also have capacity for 350 vehicles, will operate between 10 to 15 knots.


Ampere, Zero-emission Battery Powered Ferry
Norway was one of the first countries to embrace the move to alternative energies; the country was one of the earliest adopters of LNG as a marine fuel, and now it is the homebase for the world’s first battery powered electric car/passenger ferry. Built by Fjellstrand Shipyard, the 80 m long x 21 m wide Ampere produces zero emissions thanks to its Siemens’ BlueDrive PlusC electric propulsion system. The ferry does not use any fuel tanks or engines. Instead, it derives its power from its batteries which enable Norled to reduce its fuel costs by up to 60%, and save one million liters of fuel annually.

Ampere Credit SamferdselsfotoAmpere’s power system is made up of 224 Corvus Energy AT 6500 modules with a total capacity of 1.46MWH, an energy management system, a steering system, thruster control and an alarm system. The Energy Storage System (ESS) is split into four parts. Each of the vessel’s ends is fitted with a vessel mount and a shore power station—this enables and facilitates the rapid recharging of the batteries.

The innovative vessel is meant to be as environmentally friendly as possible, from the inside-out. Constructed from light-weight aluminum, the Ampere, weighs just half of what a conventional ferry would weigh. Its service life is double that of a steel hull ferry, and the vessel requires fewer drydock periods which help lower the vessel’s maintenance costs.

The Ampere is also equipped with LED lighting, high efficiency thrusters with feathering propellers from Rolls-Royce, and a HVAC system with extensive heat recovery. The ferry, which has passenger capacity for 350 and room for 120 cars, is classed by DNV-GL as 1A1- LC R4(nor), CF, C, BP, IOPP-A.


Mein Schiff 4, 99,500 grt cruise ship
vlcsnap 2015 05 20 15h01m01s183Designed for the German premium-class cruise market, the 99,500 gt Mein Schiff 4 is the fourth in a series of cruise ships being built for TUI Cruises, a joint venture between TUI AG and Royal Caribbean.

Mein Schiff 4 was constructed using advanced and eco-friendly technologies according to ship builder Meyer Turku Shipyard, Finland. The ship was built to be as environmentally friendly as possible. Its expected to consume 30 percent less energy when compared to other ships its size. The cruise ship is also fitted with a combined exhaust after-treatment system, made up of a scrubber and a catalyzer, lowering sulfur emissions by as much as 99 percent, and NOx by 75 percent.

Engine power is provided by two Wartsila 12V46 diesel engines and two Wartsila 8L46F diesel engines.

The ship is 294m long x 36m wide, with an 8m draft. It features 1,253 cabins, and has capacity for 2,790 passengers and 1,030 crew members.

Mein Schiff 4’s initial itinerary included traveling through a variety of routes in the Baltic Sea to the Baltic States and in Northern Europe around Norway. This winter, the ship will travel to the Canary Islands making stops along Morocco and Mediera.

Mein Schiff 4 is classed by DNV-GL +1A1 Passenger Ship BIS Clean F(M) Fuel (991 kg/m3, -7°C, 380 cSt) LCS(DC) TMON. Sister ships Mein Schiff 5 and 6 will be completed and delivered by the Meyer Turku yard by 2017.


Samish, 144-Car Ferry
The second in a series of four Olympic Class ferries for Washington State Ferries, the 144-Car Samish, was named in honor of the region’s native Samish Indian Nation. It’s name means “giving people,” and Washington State Ferries is hoping to do just that, by giving back to the community with the addition of the Samish to its growing ferry fleet.

SAMISH17087700982 5682073bfa oDelivered by Vigor Industrial, the new $126 million ferry, like its sister ship, the Tokitae, is based on the Olympic Class design by Seattle-based Guido Perla & Associates, Inc. The ferry measures 362 ft x 83 ft and has capacity for 144 cars and 1,500 passengers.

The Olympic Class, is built by a group of Washington-based companies—led by Vigor Industrial—offering the very best the state has to offer in design and production; and generating and supporting over 500 jobs in the Puget Sound.

Its superstructure was build by Whidbey Island, WA-based Nichols Brothers Boat Builders. Nichols built the superstructure for the Tokitae and will do the same for the third and fourth vessels in the series.

Olympic Class vessels were designed with passenger comfort in mind. The class provides wider lanes and more spaces for cars and trucks, additional comfort for passengers with two Americans with Disabilities Act-compliant (ADA compliant) elevators, an ADA-compliant car-deck restroom; flexible seating configurations; improved heating and ventilation; and wider stairwells and passageways.

Samish’s main propulsion is provided by two Electro-Motive Diesel (EMD) engines developing a total 6,000 hp, enabling the vessel to reach speeds up to 17 knots on its Anacortes to San Juan Islands route. Olympic Class ferries are also equipped with the latest emergency-evacuation and fire-suppression systems.

Samish and the other vessels in the Olympic Class also provide WSF with improved efficiency and better fuel consumption. Its hull design helps reduce wake, further improving fuel efficiency. The ships will replace the aging Evergreen State Class vessels which have been in operation since the 1950’s.


F.A. Gauthier, First LNG ferry for North America
2GauthierCanada’s Société des Traversiers du Québec (STQ) is committed to a greener future. To that end the company invested in the construction of three LNG-fueled ferries in between 2014 and 2015, including the F.A. Gauthier, which was delivered to the operator this past summer.

Built by Italy’s Fincantieri Castellamare di Stabia shipyard, the F.A. Gauthier has the distinction of being the first LNG-fueled ferry to operate in North America. Classed by Lloyd’s Register, the ferry is fitted with an ultra compliant, low-emission, dual-fuel system from Wärtsilä.

Powered by four Wärtsilä 12v34D dual-fuel generating sets, meaning the ship can run on either Liquefied Natural Gas (LNG) or Marine Diesel Oil (MDO), the 133 m x 22 m ferry can reach a maximum speed of 20 knots on its Matane-Baie-Coreneau-Godbout route.

The ship is also equipped with Wärtsilä’s LNGPac system comprised of LNG bunkering, storage tanks, and handling equipment. Its fitted with two contra-rotating propellers, making the ferry exceptionally maneuverable.

The F.A. Gauthier’s hull is certified as Ice Class 1 and Propulsion Class 1, enabling the ship to break sea ice and handle adverse weather conditions on the Gulf of St. Lawrence.  The ferry can carry 900 passengers and 180 vehicles on each trip, and is expected to transport more that 205,000 passengers and 118,000+ vehicles a year.


Viking Star, 48,000 grt cruise ship
Viking Ocean Cruises made its debut into the ocean going cruise market last year with the delivery of its highly anticipated 930 passenger Viking Star. The ship is the first of three cruise ships under construction at Fincantieri Marghera, Italy shipyard for the brand—which is a spin off of Viking River Cruises.

STAR CHRISTENING BERGEN 51611The goal for Viking Ocean Cruises was to bring the focus of cruising back to the destination. With that in mind, the brand decided to build a smaller passenger cruise ship, with a smarter design and providing guests with an enriching trip.

What makes the “small” cruise ship unique is that its engineered at a scale that enables the ship to have direct access into most ports, making embarkation and debarkation effectively easier and more efficient for guests. This lets passengers spend more time at each destination along the ship’s route.  

The Viking Star’s design pays homage to the brand’s Nordic heritage, effectively immersing the passenger into local surroundings. Clean lines, woven textiles and light-wood help evoke the Viking spirit of discovery, according to the brand, and helps connect the passenger with nature.

The 228m long ship, which features 465 state room—each with its own veranda—has two pools, a main pool with a retractable roof, and a glass-backed infinity pool cantilevered off the stern; the ship also includes indoor-outdoor spaces for al fresco dining, large windows and skylights that further blur the light between inside and out, and a wrap-around promenade deck that pays homage to classic ocean liners.

Viking Star was also designed with the environment in mind. The ship is powered by energy-efficient hybrid engines, hydro-dynamically optimized streamlined hulls and bows for maximum fuel efficiency, onboard solar panels and equipment that minimizes exhaust pollution and meets the strictest environmental regulations.


Oscar B. 115 ft ferry, Wakiakum County
OScarBWahkiakum County, Washington State is paying homage to one of the greatest skippers the country has ever had by naming the county’s newest ferry, the Oscar B, after him. Oscar Bergseng skippered the ferry, Wahkaikum, which was built in 1961, for 17 years.

Built by Nichols Brothers Boatbuilders, Freeland, WA, the 115 x 47 ft Oscar B is double the size of its predecessors, offering an expanded vehicle capacity.

The new ferry can carry 100 passengers and 23 cars between the Cathlamet, WA and Westport, OR terminals.

The ferry, designed by Seattle’s Elliott Bay Design Group, features a steel-hull, aluminum super-structure. Its power is provided by two state-of-the-art Cummins QLS diesel engines, each delivering 285 hp at 1,800 rev/min and couple to ZF Marine reversing reduction gears with two fixed-pitch propellers.

Oscar B meets all current U.S. Coast Guard requirements. Additionally, it features a hydraulic steering system, up-to-date electronics, a passenger lounge and ADA-accessible restrooms.